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ABSTRACT

Statistically downscaled forecasts of October–December (OND) rainfall are evaluated over East Africa from

two general circulation model (GCM) seasonal prediction systems. The method uses canonical correlation

analysis to relate variability in predicted large-scale rainfall (characterizing, e.g., predicted ENSO and

Indian Ocean dipole variability) to observed local variability over Kenya and Tanzania. Evaluation is

performed for the period 1982–2011 and for the real-time forecast for OND 2015, a season when a strong El

Niño was active. The seasonal forecast systems used are the National Centers for Environmental Prediction

Climate Forecast System, version 2 (CFSv2), and the Geophysical Fluid Dynamics Laboratory Forecast-Ori-

ented Low Ocean Resolution (GFDL-FLOR) version of CM2.5. The Climate Hazards Group Infrared Pre-

cipitation with Station Data (CHIRPS) rainfall dataset—a blend of in situ station observations and satellite

estimates—was used at 5 km 3 5 km resolution over Kenya and Tanzania as benchmark data for the down-

scaling. Results for the case-study forecast for OND 2015 show that downscaled output from both models adds

realistic spatial detail relative to the coarser raw model output—albeit with some overestimation of rainfall that

may have been derived from the downscaling procedure introducing a wet response to El Niño more typical of

historical cases. Assessment of the downscaled forecasts over the 1982–2011 period shows positive long-term

skill better than that documented in previous studies of unprocessed GCM forecasts for the region. Climate

forecast downscaling is thus a key undertaking worldwide in the generation of more reliable products for sector

specific application including agricultural planning and decision-making.

1. Introduction

The economy of East African nations and the liveli-

hoods of many communities are largely dependent on

rain-fed agriculture, which is highly vulnerable to the

negative impacts of climate variability. Severe droughts

and floods are recurrent hazards and frequently have

a negative impact on the livelihoods of people in the

region. On the continental scale, nearly one-third of the

African population dependent on rain-fed food pro-

duction face chronic food insecurity (Haile 2005;

Washington and Downing 1999), with the main driver

being weather and climate variability and agricultural

production and food security. For the Greater Horn of

Africa region, the drought of 2010/11, for example, af-

fected some 13 million people with estimated deaths

exceeding 50000 (Hillier and Dempsey 2012). WeatherCorresponding author: Oliver Kipkogei, oliver@icpac.net
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and climate forecasts have potential to provide early

warning of climate hazards, enabling agricultural

decision-makers to take mitigating actions to reduce

losses and boost agricultural productivity and food

security across the region. In this paper, we explore

the potential for improving general circulation model

(GCM)-based seasonal forecasts for the region using

statistical postprocessing methodology based on ca-

nonical correlation analysis (CCA).

In recent years, there has been increasing demand for

high-resolution climate forecasts at sufficient lead times

to allow response planning from users in agriculture,

hydrology, disaster management, and health, among

others. GCM-based seasonal forecasts typically have

low spatial resolution and to generate increased spatial

detail, statistical or dynamical downscaling techniques

are employed. In the dynamical technique, regional

models, driven by initial and boundary conditions from

GCMs, are used (Castro et al. 2006). This technique is

the more fundamental in that it involves simulation of

the dynamical and physical processes giving rise to spatial

details. However, imperfect representation of such pro-

cesses may introduce errors that limit the advantages

(Milonov and Raschendorfer 2001). In addition, the

dynamical approach is costly in terms of computing

resources and associated science and technical support.

In contrast, statistical downscaling methods use an

empirical approach based on comparing a target set of

historical observations with corresponding retrospec-

tive forecasts to develop a statistical model that iden-

tifies relationships between the coarse-resolutionGCM

and the higher-resolution observational data (Wilby

et al. 1998). This technique has been shown to be ef-

fective (Ndiaye et al. 2009) and demands minimal

computing facilities. In this paper, we use a statistical

approach based on CCA.

Processed output from GCMs has been used to aid

understanding and prediction of weather and climate in

the region for a range of time scales. For example,

Kipkogei et al. (2016) combined global output products

from four centers using the multimodel superensemble

technique and noted that it greatly reduced errors in

forecasts for the day 1–10 range. Rowell et al. (2016) in-

vestigated potential for evaluating the trustworthiness of

GCM climate change projections based on their perfor-

mance for simulating present-day climate, with the aim

of disregarding or down weighting poorer performing

models. It was found that this processing was unhelpful in

reducing the wide dispersion in model projected rainfall

and temperature changes. Rowell et al. (2015) noted that

the March–May rains in the region have exhibited a

downward trend in recent decades, whereas most major

global climate models project an increasing trend for the

coming decades, a phenomenon termed the East African

climate paradox.

Rainfall prediction in the eastern Africa region is

usually derived from several oceanic and atmospheric

features related to the seasonal rainfall. Regional rainfall

teleconnections with global ocean sea surface tempera-

ture (SST) patterns associated with El Niño–Southern
Oscillation (ENSO) and the Indian Ocean dipole (IOD)

aswell as SST gradients have been utilized extensively for

seasonal rainfall prediction (Mutai et al. 1998; Saji et al.

1999; Indeje et al. 2000; Marchant et al. 2007; Gitau et al.

2015; Owiti et al. 2008; Terray and Dominiak 2005; Smith

et al. 2007; Kumar et al. 1999) with most success for the

‘‘short rains’’ season (relative to the March–May ‘‘long

rains’’). Other authors have investigated preseason atmo-

spheric variables as predictors. For example, Nicholson

(2014) found that atmospheric variables generally provide

higher forecast skill than surface variables such as sea

surface temperatures. The rainfall seasonality in the region

is also modulated by circulations associated with the in-

tertropical convergence zone (Okoola 1999; Nicholson

2003; Donohoe et al. 2013). Other systems that can influ-

ence regional rainfall include the East Africa low-level jet

stream and the Indian Ocean subtropical high pressure

cells (Gitau et al. 2015), winds and local factors (Johansson

andChen 2003), as well as secondary effects resulting from

tropical cyclone activities (Shanko and Camberlin 1998),

among other factors.

Since 1998, the Intergovernmental Authority on De-

velopment (IGAD) Climate Prediction and Applica-

tions Centre (ICPAC) has been spearheading the

generation of regional seasonal forecasts for theGreater

Horn of Africa (GHA). The forecasts are an output of

the GHA Climate Outlook Forum (GHACOF) process

and are developed as a consensus product with the

National Meteorological and Hydrological Services

(NMHSs) of the 11 constituent GHA countries. Proba-

bility forecasts of 3-month rainfall totals are provided

with typically 1-month lead time [e.g., the forecast for

October–December (OND) is issued in late August].

The consensus provides a regional context that NMHSs

may employ to assist production of national downscaled

forecasts.

This paper is part of an ongoing work on the genera-

tion of improved downscaled monthly and seasonal

forecasts to promote food security initiatives at both

national and farming community levels over East

Africa. Although objective use of seasonal-time-scale

GCM outputs for the region is increasing, it is not yet

fully implemented into operational practice, and it is

therefore timely to evaluate their potential benefits,

particularly after postprocessing with the CCA tech-

nique discussed.
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2. Area of study

To evaluate the CCA technique, we focus on Kenya

and Tanzania, two countries that make up a substantial

part of the equatorial and southern GHA; however, the

method may be readily applied to other countries.

Kenya lies within 5.28S–5.18N latitude and 33.58–42.38E
longitude, whereas Tanzania lies within 12.38–0.48S
latitude and 28.78–418E longitude. Rainfall in much of

this region exhibits a bimodal cycle with most rainfall in

March, April, and May (the long rains season) as the

ITCZ moves north and in October, November, and

December (the short rains season) as it moves south.

3. Data

This study utilized rainfall hindcasts and forecasts

from two global seasonal forecasting systems, namely, the

FIG. 1. Percentage of variance explained by Y modes over (top) Kenya and (bottom) Tanzania with (left) CFS and (right) GFDL.
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National Centers for Environmental Prediction (NCEP)

CFSv2 and the Geophysical Fluid Dynamics Laboratory

Forecast-Oriented LowOceanResolution (GFDL-FLOR)

version of CM2.5. Forecasts from both systems con-

tribute to the North American Multimodel Ensemble

(NMME) for seasonal forecasting (Kirtman et al. 2014).

Observed gridded rainfall data from the high-resolution

Climate Hazards Group Infrared Precipitation with

Station Data (CHIRPS) dataset are used in downscaling

procedures and for forecast verification.

NCEP CFSv2 is a coupled global model with a reso-

lution of 0.9378 (T126) with 24 ensemble members

(Saha et al. 2006, 2010, 2014). CFSv2 has a spectral tri-

angular truncation of 126 waves in the horizontal and a

finite differencing in the vertical with 64 sigma pressure

hybrid layers (Saha et al. 2014) with an interactive three-

layer sea ice model, an upgraded four-level soil model,

and a prescribed historical carbon dioxide concentra-

tions (Wu et al. 2005) and parameterization of mountain

blocking (Alpert 2004; Lott and Miller 1997).

GFDL-FLOR is an improved version of the GFDL

ClimateModel, version 2.5 (CM2.5; Delworth et al. 2012),

and GFDL Climate Model, version 2.1 (CM2.1; Delworth

et al. 2006), with 12 ensemble members and 32 vertical

atmospheric levels (Vecchi et al. 2014). It has been used

extensively to simulate precipitation and temperature over

land (Jia et al. 2015) as well as drought patterns (Delworth

et al. 2015). GFDL-FLOR has a land and atmospheric

resolution of 0.458 and an ocean resolution of 18.
TheCHIRPSdataset, a blendof station rainfall data and

satellite estimates from the ClimateHazardsGroup (Funk

et al. 2015), was used as training data for the forecast

downscaling as well as for forecast verification. The meth-

odology for blending satellite estimates and station data is

explained in detail in Funk and Verdin (2010).

4. Methodology

In this study, the climate predictability tool (CPT)

software developed by the International Research In-

stitute for Climate and Society (Mason and Tippett

2017) was used to statistically downscale the GCM

rainfall forecasts. Climate downscaling bridges the gap

in the spatial scale of the global climate models and the

resolution needed to carry out assessment of potential

local-scale impacts. When local and large-scale fore-

cast variables exhibit a linear relationship, and are nor-

mally distributed, a regression is the best method for

downscaling (Yun et al. 2003; Wilby et al. 2002; Zheng

andRenwick 2003; Feddersen andAndersen 2005; Kang

et al. 2007; Kang et al. 2009). With statistical down-

scaling, there is a target set of observations (for this case,

FIG. 2. First CCA paired mode (mode 1) for (a) CFSv2 and (b) GFDL-FLOR over Kenya: (left) X spatial loadings; (right) Y spatial

loadings; (center) temporal scores over the 1982–2011 hindcast period and for the 2015 forecast (X pattern).
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CHIRPS) and the statistical model identifies statistical

relationships between the coarse-resolution GCM and

the corresponding observational data over the target

region. In this case, retrospective forecasts for OND

over the period 1982–2011 were used in cross-validated

mode (e.g., Michaelsen 1987) to develop the

statistical models.

CCA is amultivariate statistical technique that seeks to

decompose covariability in two sets (X, Y) of spatio-

temporal data into a series of orthogonal paired patterns

(CCA modes) that have maximum linear correlation

over associated time series of X and Y projections on

their corresponding modes. The modes are ranked ac-

cording to the magnitude of the time series correlation

(Wilks 2006, 1995; Tatsuoka 1988; Chu and He 1994).

CCA has the ability to detect and correct bias in ampli-

tude, mean, and shape of anomaly patterns when trained

on hindcast data and corresponding observations and

thus may be used both to calibrate model outputs as well

as increase spatial detail in forecasts (Mason and Tippett

2016; Mason and Mimmack 2002). Maximization of the

linear correlation is well suited to prediction problems

since the procedure seeks to identify the strongest pos-

sible relationship between predictors and predictands. In

the application of CCA available in CPT, predictors (X)

and predictands (Y) are pre-orthogonalized separately

using a standard empirical orthogonal function (EOF)

analysis. A limited number of these EOF time series are

then used in the CCA procedure. The CCA modes are

determined based on the covariability of the truncated

predictor and predictand EOF time series in the training

period. The predictor data are then projected onto the

CCA loading patterns to generate forecasts.

The CCA technique can be summarized mathemati-

cally following Wilks (1995, 2006). Given two variables

x and y of same time dimension, a determination on their

degree of association can be made by constructing two

canonical variates CVx1 and CVy1:

CV
x1
5 a

1
x
1
1 a

2
x
2
1 a

3
x
3
1 . . . . 1 a

n
x
n

and (1)

CV
y1
5 b

1
y
1
1b

2
y
2
1 b

3
y
3
1 . . . . 1 b

m
y
m
. (2)

In Eqs. (1) and (2), a1, . . ., an and b1, . . ., bm are the

canonical weights selected to maximize the degree of

association between the variates. The first pair of the

canonical weighting factors maximizes the degree of

relationship (correlation) over all possible weights. The

second pair is selected using the same criteria, with the

additional requirement that the time series of weights is

not correlated with those of the first pair. The time series

of weights for the third pair are selected to be un-

correlated with the first and second pair, and so on

(Barnston and Ropelewski 1992; Cherry 1996; Repelli

and Alves 1996; Nicholls 1987). Comparison with other

FIG. 3. As in Fig. 2, but for Tanzania.
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downscaling methods has been explained in detail (Liu

et al. 2015; Wilby and Wigley 1997).

In the following section, assessments of deterministic

forecasts for OND 2015 and probabilistic forecasts of

rainfall tercile categories over the hindcast period are

made. Probability forecasts are generated in the CPT

package by constructing a probability density function

(PDF) for each data point, with mean equal to the de-

terministic output of the CCA analysis and standard

deviation given by the mean error of the downscaled

forecasts. Probabilities for tercile categories are then

derived from the PDF.

In the CCA configurations used, a circumtropical X

domain (308S–308N and 08–3598E) is employed. The X

variable employed is the ensemble mean predicted

precipitation for the OND target season. The circum-

tropical X domain was selected to harness telecon-

nection responses to the East African region from

large-scale climate modes, predominantly ENSO and

IOD, while use of precipitation as the predictor vari-

able should characterize the large-scale convective

heating associated with the transmission of telecon-

nection effects associated with these climate modes.

Shukla et al. (2014) have used a similar domain in a

constructed analog approach to predict March–May

rainfall over a subregion of East Africa. TheY domains

used are defined by theKenyan and Tanzanian national

boundaries, with a separate analysis performed for

each country. The CFSv2 and GFDL-FLOR OND

forecasts used as X (predictor) fields were initialized

in September.

Scree plots that explain the percentage of variance as-

sociated with eachX and Y EOF were used to determine

the number of modes used to make cross-validated

forecasts. Modes were selected based on identification

of ‘‘elbows’’ in the scree plots with numbers chosen ex-

tending up to and not including the elbows (Mason and

Graham 2002). For CFSv2, for example, for the Y vari-

able, 4 and 2 modes were used over the Kenyan and

Tanzanian domains, respectively, explaining a cumula-

tive variance. 70% (Fig. 1). Over theKenya domain, for

example, the CFSv2 times the spatial loading pattern

for CCA mode 1 (Fig. 2a) shows a classic positive ENSO

(El Niño) and a positive IOD pattern. The paired Y

spatial loading for mode 1 shows that the X pattern is

related to above-normal precipitation over the whole of

the Y (country) domain, with the highest loadings in the

north and west. The temporal scores show how much

each pattern was evident in past years. For example, both

the X and Y patterns have high scores in 1997 when

positive ENSO and IOD occurred and the rainfall was

well above normal. The X temporal score for 2015 is

FIG. 4. Observed and predicted OND 2015 rainfall (mm) over Kenya: (a) observed rainfall (CHIRPS), raw (undownscaled)

predictions from (b) CFSv2 and (c) GFDL-FLOR, downscaled predictions from (d) CFSv2 and (e) GFDL-FLOR, and the de-

partures of downscaled forecasts from observations for (f) CFSv2 and (g) GFDL-FLOR.
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similar to that of 1997—indicating that the forecast

signals a similarly wet outcome. Results are similar for

GFDL (Fig. 2b), though with a lower temporal score

for the 2015 forecast relative to 1997. Similar X and Y

loading patterns are found for the Tanzania analysis

(Fig. 3—note the color convention is reversed from

that of Fig. 2), with again the CFSv2 system being more

confident of a 2015 outcome similar to that of 1997 than

the GFDL system.

We evaluate the forecast performance over the

1982–2011 period using the World Meteorological

Organization (WMO) standard forecast verification

scores. These include the relative operating character-

istics (ROC) curve and area under the curve (ROC

score), the latter being recognized as an equivalent to

the Hanssen–Kuipers skill score (KSS) when applied to

deterministic forecasts (Hanssen and Kuipers 1965,

Swets 1973; Mason 1982; Harvey et al. 1992; Mason and

Graham 1999; Mason and Chidzambwa 2008). ROC is a

measure of the quality of the forecasts that relates the hit

rates and false alarm rates associated with predicting

a given event (e.g., rainfall below the lower tercile).

To calculate the ROC, the event is deemed forecast if

its predicted probability exceeds a threshold value.

Hit rates and false-alarm rates are calculated for a

range of forecast probability thresholds and are typically

plotted to form a curve on an ROC diagram of hit rates

(Y axis) versus false-alarm rates (X axis). For a skillful

forecast, hit rates must exceed false-alarm rates, and the

ROC curve will bulge upward from the diagonal and

have a normalized area under the curve greater than 0.5;

the more so, the greater is the forecast skill. Forecasts

that have an ROC curve located on or near the diagonal

(ROC score of order 0.5) effectively have hit rates equal

to false-alarm rates and have no ability to discriminate

the event from the nonevent (Mason and Graham 2002;

Kharin and Zwiers 2003). Mason and Weigel (2009)

have shown that the ROC score may be interpreted as

the percentage of forecasts that correctly discriminate

the forecast event from the nonevent.

5. Results and discussion

a. Real-time forecast for OND 2015

Figures 4 and 5 show observed, raw, and downscaled

model forecasts (CFSv2 and GFDL-FLOR) for OND

2015 over Kenya and Tanzania, respectively. For the

downscaled forecasts, the deviation from observations is

also shown. Kenya and the northern part of Tanzania

basically lie within the equatorial belt and are associated

with a wet signal in OND when ENSO is in its positive

phase. Over Kenya, downscaled forecasts from both

CFSv2 and GFDL-FLOR (Figs. 4d,e) indicated that

most parts would receive amounts of between 200 and

500mm, with some parts in western, central, and eastern

FIG. 5. As in Fig. 4, but for Tanzania.
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Kenya expected to receive rains greater than 500mm.

The downscaled GFDL (Fig. 4e) improves on the raw

GFDL (Fig. 4c) by better capturing rainfall amounts and

distribution in the drier area in the northwest as well as

the wetter area in central Kenya. This improvement is

also apparent, though to a lesser degree, with the CFSv2

downscaled forecast (Fig. 4d). The computed difference

between the downscaled forecasts of both models and

observations (Figs. 4f,g) shows that both models over-

forecast in the eastern parts of Kenya. In contrast, the

GFDL model underforecast rainfall amounts around

the Lake Victoria basin by more than 100mm in some

places (Fig. 4g).Over other parts of western Kenya,

GFDL-FLOR gave the better performance with small

departures from observations (650mm) more wide-

spread than for CFSv2.

FIG. 6. Forecasts and cross-validated hindcasts for the location 1.028N, 358E (Kitale area in Kenya) for the OND 2015 season for

(a) CFSv2 and (c) GFDL-FLOR, along with ROC scores for the same location for (b) CFSv2 and (d) GFDL-FLOR. ROC scores are

calculated over the hindcast period 1982–2011 using a cross-validation window of 3 yr.

3236 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 56



Results for Tanzania are provided in Fig. 5. The

downscaled forecasts (Figs. 5d,e) indicated that most parts

would receive amounts greater than 300mm for both the

CFSv2 and GFDL-FLOR. Raw forecasts from the CFSv2

model (Fig. 5b) underforecast rains in the northern and

western parts of the country, and thesewet peaks aremuch

better captured by the downscaled CFSv2 (Fig. 5d). In

these areas CFSv2 performed better than GFDL-FLOR,

asmay be seen by comparing the corresponding deviations

from observations (Figs. 5f,g), which show overprediction

by GFDL-FLOR by more than 100mm. Indeed GFDL-

FLOR overforecast over much of the country except on

the central region, while in CFSv2 overforecasting was

limited to the eastern half of Tanzania.

b. Hindcast skill assessment

Skill scores in terms of ROC and correlation were

computed to gauge the skill of the downscaled forecasts

with a cross-validation window of 3 yr. Figures 6 and 7

show cross-validated hindcasts and ROC scores for

FIG. 7. As in Fig. 6, but for the location 3.218S, 35.788E (Arusha area in northern Tanzania).
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a location in Kenya (Kitale area; 1.028N, 358E) and

Tanzania (Arusha area; 3.218S, 35.788E) for the CFSv2

(Figs. 6a,b and 7a,b) and GFDL-FLOR (Figs. 6c,d and

7c,d), respectively. Both areas form important agricul-

tural belts for the two countries. ROC scores for Kitale

and Arusha stations indicate that CFSv2 had scores of

0.78 (0.69) and 0.86 (0.80), respectively, whereas the

GFDL-FLOR had scores of 0.73 (0.61) and 0.73 (0.71)

for the above-normal (below normal) forecast categories.

This implies that the models presented are skillful in

capturing categorical forecasts in the given locations.

Figures 8 and 9 show the spatial distribution of ROC

scores over Kenya and Tanzania, respectively. The fig-

ures show that most areas over the two countries had

ROC values greater than 0.5 with coherent areas present

with scores exceeding 0.7, most notably for predictions

of the above-normal category. Indeed, the ROC scores

for the above-normal category for both models reach 0.8

locally for parts of northern and western Tanzania and

northern and western parts of Kenya. In such regions,

the downscaled forecasts correctly discriminate the ob-

served category on 80% of the occasions (Mason and

Weigel 2009). Figure 10 shows the Pearson correlation

scores for the OND season for both CFSv2 (Figs. 10a,b)

andGFDL-FLOR (Figs. 10c,d) over Kenya and Tanzania.

Pearson correlation gauges the strength of association

between two variables. Most parts of Kenya have corre-

lation scores greater than 0.45 with the highest scores of

greater than 0.75 being recorded in the northeastern parts

for both CFSv2 and GFDL-FLOR. Most areas of

FIG. 8. ROC scores (area under curve) for the OND 2015 season for the (left) above- and (right) below-normal

tercile rainfall forecast categories for Kenya from (a),(b) the CFSv2 system and (c),(d) the GFDL-FLOR system.

ROC scores are calculated over the hindcast period 1982–2011 using a cross-validation window of 3 yr and plotted

on the CHIRPS grid.
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Tanzania had scores of between 0.15 and 0.3, with an ex-

ception of a few patches in northern parts that had a score

greater than 0.45 for bothmodels. These correlation scores

are similar or better than those found by other authors

using unprocessed GCM output, indicating that the im-

proved spatial detail does not come at the expense of re-

duced skill. For example, Mwangi et al. (2014) found

correlations of between 0.4 and 0.7 for climatic zones of

Kenya and correlations of less than 0.3 for much of Tan-

zania from September-initialized ECMWF System 4

forecasts. The relatively low scores obtained over southern

Tanzania relative to northern parts andKenya in this study

are likely related to rainfall seasonality: OND is a wet

season in the north of the country (and Kenya), but this

period largely precedes the key wet season, December–

February, over central and southern parts of Tanzania.

6. Conclusions

Weather and climate downscaling is an important area

for both research and applications. Currently, a number of

techniques are being tested and proposed for use in trans-

lating coarse climate forecasts into finer resolutions for

improved decision-making. Statistical downscaling using

the climate predictability tool is one of these techniques.

This study utilized forecast products from two sea-

sonal forecast systems, namely, the NCEP CFSv2 and

the GFDL-FLOR, calibrated using the high-resolution

blended CHIRPS rainfall dataset. The ROC perfor-

mance metric and Pearson correlation were used for

evaluating downscaled hindcasts for the OND season.

Evaluation was performed for the period 1982–2011 and

for the real-time forecast for OND 2015 for the down-

scaled forecasts. Although evaluation was not done for

the raw forecasts over the hindcast period, the raw OND

2015 was generated for comparison purposes.

The main findings of this study show that downscaled

forecasts from both models had good skill in estimating

seasonal rainfall amounts. In the 2015 case study, the

downscaled fields from both models were found to add

useful spatial detail relative to the coarser raw model

output extracted for the same regions. In particular, the

observed relatively wet conditions over central and west-

ern Kenya and dry conditions in northwest Kenya were

well delineated. In general, the downscaled forecasts for

this case overestimated rainfall in many parts of both

FIG. 9. As in Fig. 8, but for Tanzania.
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countries, particularly in the east—perhaps because the

use of a circumtropical predictor field introduced a more

typical wet response to the El Niño forcing than was ac-

tually observed in 2015. Notwithstanding, the overpre-

diction in some parts of the region for OND 2015,

assessment of the downscaled forecasts over the 1982–2011

period shows positive long-term skill similar to or better

than that documented in other studies of skill for un-

processed GCM output. Probabilistic forecasts correctly

discriminate the above-normal tercile category more than

70% of the time over substantial areas, particularly in

northern Kenya and central–eastern Tanzania. The ability

to discriminate the below-normal category is somewhat

weaker, though it is achieved in more than 60% of the

forecasts over much of the area.

Most parts of Kenya had Pearson correlation scores

greater than 0.45, with highest scores of greater than 0.75

being recorded in northeastern parts. Most of the areas

in central and southern Tanzania had a score of between

0.15 and 0.3, with an exception of a few patches in the

northern parts that had a score greater than 0.45. Lower

scores in southern Tanzania may reflect the fact that, in

this region, the OND period does not correspond with a

rainy season peak as in the north.

Reliable climate information plays a vital role in policy

formulation and improved decision-making. This paper

therefore promotes generation of improved downscaled

forecasts for application in food production program-

ming and decision-making both at the national and

farming community levels. Further research and work

are needed to improve the existing downscaling tech-

niques and propose new ones in order to further improve

quality of forecast products.
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