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ABSTRACT

This study evaluates the ability of 10 regional climate models (RCMs) from the Coordinated Regional

Climate Downscaling Experiment (CORDEX) in simulating the characteristics of rainfall patterns over

eastern Africa. The seasonal climatology, annual rainfall cycles, and interannual variability of RCM

output have been assessed over three homogeneous subregions against a number of observational

datasets. The ability of the RCMs in simulating large-scale global climate forcing signals is further

assessed by compositing the El Ni~no–Southern Oscillation (ENSO) and Indian Ocean dipole (IOD)

events. It is found that most RCMs reasonably simulate the main features of the rainfall climatology over

the three subregions and also reproduce the majority of the documented regional responses to ENSO and

IOD forcings. At the same time the analysis shows significant biases in individual models depending on

subregion and season; however, the ensemble mean has better agreement with observation than in-

dividual models. In general, the analysis herein demonstrates that the multimodel ensemble mean sim-

ulates eastern Africa rainfall adequately and can therefore be used for the assessment of future climate

projections for the region.

1. Introduction

The rainfall pattern over eastern Africa is highly vari-

able both in space and time. The region is already wit-

nessing dire consequences of erratic climatic conditions

that are likely to be associated with regional climate

change (FEWS NET 2011; Anyah and Qiu 2012). The

region experiences serious food insecurity and resource-

based conflicts in addition to recurring droughts and

floods that have dramatic socioeconomic impacts (UNEP

2011; World Bank 2012). The 2007 Intergovernmental

Panel on Climate Change (IPCC) report provided clear

evidence of climate change in the region with increased

risks of climate extremes. The economies and liveli-

hoods of people in the majority of countries in the re-

gion still rely on rain-dependent systems and so are

vulnerable to current rainfall variability and potential

changes in rainfall due to climate change. Recent eco-

nomic assessments (World Bank 2012) show that no
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sustainable development can be attained in the region

without effective regional systems for climate risk re-

duction including climate change adaptation.

Global climate models (GCMs) are suitable tools for

the assessment of climate variability and change. Cur-

rent GCMs have spatial resolution on the order of 100–

250 km and have the potential to simulate the main

characteristics of general circulation at the range of this

scale (Shongwe et al. 2009). Although GCMs can satis-

factorily simulate the atmospheric general circulation at

the continental scale, they are not necessarily capable of

capturing the detailed processes associated with regional–

local climate variability and changes that are required for

regional and national climate change assessments (Giorgi

and Mearns 1999; Denis et al. 2002; Wang et al. 2004;

Giorgi et al. 2009; Rummukainen 2010). This is partic-

ularly true for heterogeneous regions such as eastern

Africa, where sub-GCM gridscale variations in topog-

raphy, vegetation, soils, and coastlines have a significant

effect on the climate. In addition, at coarse grid resolu-

tions, the magnitude and intensity of subgrid-scale ex-

treme events such as heavy rainfall (leading to floods)

are often not captured, nor realistically reproduced. Gen-

erally, GCM data have been used to describe the climate

processes of many African regions and to produce the

climate information for applications in different socio-

economic sectors including agriculture, water, and health

(Alley et al. 2007). However, in order to formulate ad-

aptation policies in response to climate change impacts,

reliable climate change information is usually required

at finer spatial scales than that of a typical GCM.

Regional climate models (RCMs) dynamically down-

scaleGCMoutput to scalesmore suited to end users (Sun

et al. 2006) and are useful for understanding local climate

TABLE 1. List of RCMs used and their details (Source: Nikulin et al. 2012).

CNRM Action de

Recherche Petite
�Echelle Grande

�Echelle (ARPEGE) 5.1 DMI HIRHAM5

ICTP regional climate

model version 3

(RegCM3)

CLMcom

COSMO-CLM

(CCLM) version 4.8

Institute Centre National de

Recherches

M�et�eorologiques

(CNRM), France

Danmarks

Meteorologiske

Institut (DMI),

Danmark

Abdus Salam

International

Centre for Theoretical

Physics (ICTP), Italy

Climate Limited-Area

Modelling (CLM)

Community (www.

clm-community.eu)

Short name ARPEGE HIRHAM RegCM3 CCLM

Projection resolution Polar, stretching

factor 2 (tl179)

Rotated pole 0.448 Mercator 50 km Rotated pole 0.448

Vertical

coordinate/levels

Hybrid/31 Hybrid/31 Sigma/18 Terrain following/35

Advection Semi-Lagrangian Semi-Lagrangian Eulerian Fifth-order upwind;

Baldauf (2008)

Time step (s) 1200 600 100 240

Convective scheme Bougeault (1985) Tiedtke (1989) Grell (1993); Fritsch

and Chappell (1980)

Tiedtke (1989)

Radiation scheme Morcrette (1990) Fouquart and Bonnel

(1980); Mlawer et al.

(1997)

Kiehl et al. (1996) Ritter and Geleyn

(1992)

Turbulence vertical

diffusion

Mellor and Yamada

(1982)

Louis (1979) Holtslag et al. (1990) Herzog et al. (2002);

Buzzi et al. (2011)

Cloud microphysics

scheme

Ricard and Royer

(1993)

Tiedtke (1989);

Tompkins (2002)

Subgrid explicit

moisture scheme

(SUBEX); Pal

et al. (2000)

Doms et al. (2007);

Baldauf and Schulz

(2004)

Land surface scheme ISBA; Douville et al.

(2000)

Schulz et al. (1998);

Hagemann (2002)

BATS1E; Dickinson

et al. (1993)

TERRA-ML; Doms

et al. (2007)

Latest reference

and comments

D�equ�e (2010) Christensen et al.

(2006)

Pal et al. (2007) Rockel et al. (2008);

Baldauf et al. (2011)
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in regions that have complex topography such as eastern

Africa. Globally, there has been a marked increase in the

number of RCM simulations (Alley et al. 2007); however,

very few RCM studies have been performed over the

East African region (Sun et al. 1999a; Indeje et al. 2000;

Anyah, 2005; Anyah et al. 2006; Anyah and Semazzi

2006; Anyah and Semazzi, 2007; Segele et al. 2009a; Diro

et al. 2012), and these studies are largely based on the

results from a single RCM. However, each model has its

strengths and weaknesses. Thus, the application of a set

of RCMs is needed, but this has not been done before

because of the lack of a large ensemble of RCM output.

Currently, the Coordinated Regional Climate Down-

scaling Experiment (CORDEX) program, initiated by

the World Climate Research Program, provides an op-

portunity for generating high-resolution regional cli-

mate projections, which can be used for assessment of

the future impacts of climate change at regional scales

(Giorgi et al. 2009). However, the ability of the RCMs

has to be assessed before they are used for generating

downscaled projections of the future climate.

This study aims to assess the performance of the

CORDEX RCMs (Table 1) in simulating the current

rainfall characteristics over the East African region de-

fined as the area lying within 168S–188N, 228–528E (Fig. 1).

We also investigate the ability of the RCMs to capture

the influence of the large-scale climate circulation pat-

terns (teleconnections) on regional rainfall. The research

focuses on the selected East African CORDEX sub-

regions (Fig. 1) that have been classified on the basis of

their rainfall distribution as delineated by Favre et al.

(2011). The seasons chosen for study are June–September

(JJAS) for the northern sector and October–December

(OND) for the equatorial and southern sectors. Previous

TABLE 1. (Extended)

KNMI Regional

Atmospheric Climate

Model, version 2.2

(RACMO2.2b)

MPI regional

model (REMO)

SMHI Rossby

Center Regional

Atmospheric

Model (RCA35)

UCT Providing

Regional

Climates for

Impacts Studies

(PRECIS)

UC Weather

Research and

Forecasting Model

version 3.1.1.

(WRF3.1.1)

UQAM

fifth-generation

Canadian Regional

Climate Model

(CRCM5)

Koninklijk

Nederlands

Meteorologisch

Instituut (KNMI),

Netherlands

Max Planck

Institute (MPI),

Germany

Sveriges

Meteorologiska

och Hydrologiska

Institut (SMHI),

Sweden

University of Cape

Town (UCT),

South Africa

Universidad de

Cantabria, Spain

Universit�e du

Qu�ebec �a

Montr�eal

(UQAM),

Canada

RACMO REMO RCA PRECIS WRF CRCM

Rotated pole 0.448 Rotated pole 0.448 Rotated pole 0.448 Rotated pole 0.448 Mercator 50 km Rotated pole

0.448
Hybrid/40 Hybrid/27 Hybrid/40 Hybrid/19 Terrain following

ETA/28

Hybrid/56

Semi-Lagrangian Semi-Lagrangian Semi-Lagrangian Eulerian Eulerian Semi-Lagrangian

720 240 1200 300 240 1200

Tiedtke (1989) Tiedtke (1989) Kain and Fritsch

(1990, 1993)

Gregory and

Rowntree

(1990); Gregory

and Allen (1991)

Kain (2004) Kain and Fritsch

(1990); Kuo (1965)

Fouquart and

Bonnel (1980)

Morcrette et al.

(1986); Giorgetta

and Wild (1995)

Savij€arvi (1990);

Sass et al. (1994)

Edwards and

Slingo (1996)

Dudhia (1989);

Mlawer et al. (1997)

Li and Barker

(2005)

Eddy-diffusivity

(first-order K)

mass flux approach

Louis (1979) Cuxart et al. (2000) Wilson (1992) Hong et al. (2006) Benoit et al. (1989);

Delage (1997)

Tiedtke (1993) Lohmann and

Roeckner (1996)

Rasch and

Kristj�ansson

(1998)

Smith (1990) WRF single-moment

5-class microphysics

scheme (WSM5);

Hong et al. (2004)

Sundqvist et al.

(1989)

TESSEL; ECMWF

(2006)

Hagemann (2002)

Rechid et al.

(2009)

Samuelsson et al.

(2006)

MOSES2; Essery

et al. (2003)

Smirnova et al. (2000) CLASS 3.5;

Verseghy (2000)

van Meijgaard et al.

(2008); based on

ECMWF cycle

31r1; ECMWF

(2006)

Jacob (2001) Jacob

et al. (2007)

Samuelsson et al.

(2011)

Jones et al. (2004) Skamarock et al.

(2008)

Zadra et al. (2008)
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studies (Indeje et al. 2000; Mutemi 2003; Nyakwada

2009) show that the long rainfall season over the equa-

torial sector that occurs in March–May (MAM) is dom-

inated by local factors rather than large-scale factors in

the modulation of rainfall patterns. Relative to the long

rains, the short rains tend to have stronger interannual

variability, stronger spatial coherence of rainfall anom-

alies across a large part of the region, and a substantial

association with ENSO and the Indian Ocean dipole

(IOD) (e.g., Ropelewski and Halpert 1987, 1989; Ogallo

1988; Hastenrath et al. 1993; Nicholson and Kim 1997;

Saji et al. 1999; Indeje et al. 2000;Mutemi 2003; Nyakwada

2009). Also, OND is the common rainfall season for both

equatorial and southern parts of the eastern Africa. Con-

sequently, our study focuses on JJAS for the northern

sector and OND for the equatorial and southern sectors

only.

The study is organized as follows: in section 2, we

present a brief description of the study area, datasets,

and methodology used. In section 3, we present the re-

sults and discussion beginning with the climatology,

mean annual cycle, interannual variability, and the re-

sponse of ENSOand IOD to regional rainfall anomalies.

Finally in section 4, we summarize the key results and

present our conclusions.

2. Data and methodology

a. Study region

Our study focuses on the CORDEX eastern African

region, which refers to the countries of theGreaterHorn

of Africa (GHA), namely, Burundi, Djibouti, Eritrea,

Ethiopia, Kenya, Rwanda, Somalia, Sudan, South Sudan,

Tanzania, and Uganda (Fig. 1). The region has a com-

plex topography and is characterized by different rain-

fall regimes. Local factors such as complex terrain and

land surface heterogeneity and their consequent inter-

actions with large-scale climate forcing mechanisms

contribute to the diverse spatial rainfall patterns over

the region. The climatological annual rainfall cycle in

much of eastern Africa is strongly linked to the north–

south movement of the intertropical convergence zone

(ITCZ). The assessment is performed over three sub-

regions of the domain (Fig. 1), which are hereafter re-

ferred to as NEA (northern East Africa; 7.258–15.258N,

33.758–40.258E), EEA (easternEastAfrica; 2.258–11.758N,

44.258–51.758E), and SEA (southern East Africa; 2.258–
15.258S, 28.758–35.258E). These subregions have been

chosen based on previous studies that classified CORDEX-

Africa into 15 homogeneous subregions based on observed

Global Precipitation Climatology Centre (GPCC) rainfall

data (Favre et al. 2011), and also they are representative

of different rainfall patterns over East Africa associated

with different mechanisms.

NEA (region 4) covers the Ethiopian highlands,

which exhibit a unimodal rainfall pattern between June

and September. EEA (region 5) covers the eastern equa-

torial parts of East Africa and is characterized by a bi-

modal rainfall distribution with themajor rainfall season

in March–May and a shorter rainfall season in October–

December. SEA (region 9) covers the southern part of

eastern Africa and is mainly characterized by unimodal

rainfall distribution spanning from November to April.

b. Data

1) RCM DATA

In this study, we used simulated monthly rainfall data

from 10 CORDEX RCMs. The RCMs were forced by

lateral and surface boundary conditions from the Eu-

ropean Centre for Medium-Range Weather Forecasts

(ECMWF) Interim Re-Analysis (ERA-Interim), and

downscaled data are available for the period 1989–2008.

All simulations were performed at ;50 km (0.448) res-
olution over the CORDEX-Africa domain. Table 1

presents a full list of the RCMs used (with full expan-

sions) and the details of their dynamics and their phys-

ical parameterizations. More information on model

output can be obtained from Nikulin et al. (2012). This

paper uses the short names for the CORDEX RCMs.

FIG. 1.Map of the study area (greaterHorn ofAfrica), with three

subregions represented by boxes 4 (NEA), 5 (EEA), and 9 (SEA)

that are utilized for analysis (Favre et al. 2011).
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2) OBSERVED DATA

Generally, Africa lacks high-quality observation data-

sets at suitable temporal and spatial resolution necessary

for evaluating RCM simulations. Sylla et al. (2012) pre-

sented an intercomparison of different observed daily

precipitation datasets and a validation exercise of a re-

gional climate model simulation (with the RegCM3

model). They found that substantial discrepancies exist

among the different observational datasets, and thismakes

it difficult to assess the model performance. Similarly,

Nikulin et al. (2012) show large differences between

satellite and gauge-based products.

For this study, model results are compared against

three observational datasets. Two gauge-based gridded

observational datasets are used that are available at

0.58 spatial and monthly temporal resolution: the Global

Precipitation Climatology Centre (version 5, 1901–2006;

Rudolf et al. 2010) and Climatic Research Unit (CRU)

(version 3.0, 1901–2006; Mitchell and Jones 2005). Fur-

thermore, satellite-gauge combineddataset from theGlobal

Precipitation Climatology Project (GPCP; version 2.2;

http://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html)

is used even though the resolution is coarse (2.58).
GPCC data are chosen as a reference field to evaluate

the performance of CORDEX RCMs in the context of

rainfall over the region. The choice of GPCC data is

based on its sufficiently long time series that cover the

period (1989–2008) of simulated data. Other advantages

are that the GPCC dataset has same resolution as the

RCMs’ simulated data, and as stated earlier the regions

used in the analysis were classified based onGPCC data.

ERA-Interim reanalysis data were not used as a com-

parison field since CORDEX RCMs are forced by

ERA-Interim reanalysis and therefore there may be

autocorrelation between the ERA-Interim precipitation

field and the simulated precipitation fields. However,

because of the lack of high-resolution wind data over the

continent to compare the circulation pattern, ERA-

Interim wind field data are used as comparison fields.

3) DATA LIMITATIONS

The data used in this analysis were produced by many

different downscaling groups (see Table 1). These data

were generally received in the native model format,

projection, and grid and thus had to be postprocessed

into a common data format with the same horizontal and

vertical dimensions. This enormous task was performed

at the Sveriges Meteorologiska och Hydrologiska In-

stitut (SMHI), Sweden, and the institute also served as

the repository for the postprocessed data. An initial set

of diagnostic variables were processed by the SMHI

at the start of the CORDEX-Africa analysis initiative,

which started in 2011; however, as the analysis pro-

gressed additional prognostic variables were desired to

understand the downscaled results (e.g., winds at par-

ticular levels to examine the presence of jets). Un-

fortunately these variables (except 850-hPa level wind)

could not bemade available at a later stage by all centers

(for reasons such as space and deletion) so subsequently

some variables were not available for inclusion in the

analysis. It was therefore not possible to assess the dy-

namical drivers at different level of observed biases in

the RCMs despite the desire to do so.

c. Methodology

We adopted two general criteria to assess the ability

of CORDEX RCMs to simulate East African rainfall.

The first criterion assesses the ability of the RCMs to

reproduce the rainfall climatology. The second criterion

assesses the ability of theRCMs to capture the interannual

rainfall variability and teleconnection signals. Brief de-

scriptions of each assessment are given below.

In the first assessment of rainfall climatology, a num-

ber of tests are performed. Comparison of observed and

simulated seasonal mean rainfall climatology over the

entire East African region is done to examine the ability

of RCMs to capture the spatial distribution of rainfall. A

paired difference Student’s t test for hypothesis of zero

difference between the mean of simulated and observed

seasonal rainfall at 5% level of significance is applied for

each subregion to detect significant differences in the

two means. To assess the consistency of the models in

representing the spatial distribution of rainfall with time,

spatial correlation between observed and simulated rainfall

is computed for each year. The annual cycle of rainfall, area

averaged for each region, is computed for both observed

and simulated data to determine how well the RCMs

capture rainfall seasonality in the respective regions.

TABLE 2. Classification of ENSO and IOD zonal node (IODZM) events from 1989 to 2008 during the two seasons of study (source: http://

www.marine.csiro.au/;mcintosh/Research_ENSO_IOD_years.htm).

Pure negative

IODZM Pure La Ni~na

Pure positive

IODZM Pure El Ni~no

Co-occurrence of El Ni~no

and positive IODZM

Co-occurrence of La Ni~na

and negative IODZM

1989 1998 1994 1991

1992 1999 2004 1997

2007
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A Taylor diagram (Taylor 2001) is used to evaluate

the spatiotemporal pattern errors (i.e., ‘‘centered’’ er-

rors) in themodel results. The diagram characterizes the

statistical relationship between two fields, a ‘‘test’’ field

(often representing a field simulated by a model) and

a ‘‘reference’’ field (usually representing ‘‘truth,’’ based

on observations). In the diagram, the distance from the

origin is equal to the standard deviation, while the dis-

tance from the reference point (GPCC in this case) is the

equal root-mean-square (RMS) difference between the

reference and test fields, and the cosine of the polar angle

is equal to the correlation. A ‘‘perfect’’ model under this

definition would have no error as computed by the root-

mean-square. It would perfectly correlate with the ob-

served data, andwould have the same standard deviation.

Thus, ‘‘skill’’ measures correspondence among patterns,

trends, and variability in the model and observations.

Note that the means of the fields are subtracted out

before computing their second-order statistics, so

the diagram does not provide information about overall

biases, but solely characterizes the centered pattern error.

These statistics are related by the following equation:

E02 5s2
f 1s2

r 2 2sfsrR , (1)

whereR is the correlation coefficient between themodel

( f)and observed (r) given by Eq. (2);

R5

1

N
�
N

n51

( fn2 f )(rn 2 r)

sfsr

, (2)

where N is the number of data points in the model and

observed fields, whereas s2
f and s2

r are the variances of

the model and reference fields given respectively by

Eqs. (4a) and (4b).

FIG. 2. (a) Climatology of rainfall in eastern Africa during JJAS as simulated by (top two and a half rows) the 10 CORDEX RCMs,

(third row, last two panels) ensemble and ERA-Interim, and (bottom) observation (GPCC, GPCP, and CRU). All in mmday21. (b) As in

(a), but for OND.
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The centered RMS difference between the fields E0 is
given by Eq. (3):

E05

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
N

n51

[( fn2 f )2 (rn 2 r)]2

s
, (3)

s2
f 5

1

N
�
N

n51

( fn 2 f )2 , (4a)

s2
r 5

1

N
�
N

n51

(rn2 r)2 . (4b)

The second assessment of the ability of the RCMs is

to capture the interannual rainfall variability and telecon-

nection signals. To assess the ability of the models in sim-

ulating the year-to-year variability of rainfall, time series of

spatially averaged seasonal rainfall anomaly for JJAS over

NEA and OND over EEA and SEA are analyzed.

Composite analysis is used to assess the RCMs’ ability

to reproduce rainfall anomalies associated with large-

scale features such as ENSO and IOD. We use the

Ummenhofer et al. (2009) classification and develop

composites of strong ENSO, IOD, and co-occurring

events. These events are classified on the basis of their

sea surface temperature (SST) indices. The condition for

defining an El Ni~no or La Ni~na year is when the SST

anomaly over Ni~no-3 region (58S–58N, 908–1508W) is

more than 18C or less than 218C for two or more consec-

utive months between and including June and February

of the following year, respectively. A year is counted as

being positive or negative IOD when the SST anomaly

over the western Indian Ocean region (108S–108N, 508–
708E) is larger than 18C or less than 218C for two or

more consecutive months between and including June

and December, respectively. Details of the method for

classifying years can be found inMeyers et al. (2007) and

Ummenhofer et al. (2009). Using Table 2, we composite

FIG. 2. (Continued)
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years of positive–negative IOD, El Ni~no–La Ni~na, and

co-occurrence events. ENSO and IOD events are ana-

lyzed separately to assess the role of each event in

modulating rainfall variability over the region. The com-

posites of El Ni~no, La Ni~na, positive IOD, negative IOD,

and co-occurrence events are formed for the JJAS and

OND seasons within the study period for observations

and RCMs. The method is based on the difference be-

tween average of the seasonal rainfall of the event years

and the climatology for the same season.

3. Results and discussion

a. Seasonal averages

1) RAINFALL CLIMATOLOGY

Figures 2a and 2b show the mean seasonal rainfall for

JJAS and OND (averaged for 1990–2006) from the 10

CORDEX RCMs, the ERA-Interim reanalysis, and the

ensemble mean of the RCMs in comparison with the

observed datasets. All RCMs show rainfall band over

land concentrated in the northern sector of the region,

which is associatedwith the northwardmovement of ITCZ

(Fig. 2a). Spatially, all the models capture the rainfall

maximumover northernEastAfrica; however,most of the

RCMs and ERA-Interim oversimulate rainfall over the

Ethiopian highlands, while the ensemble mean has rel-

atively good agreement with our reference dataset GPCC.

During this period, most regions below the equator are

dry and this is well captured by the RCMs.

During OND (Fig. 2b), the RCMs indicate that the

rainfall band is concentrated over the equator and south

of equator where the ITCZ is located at this time of the

year. The RCMs reproduce most of the spatial structure

of OND rainfall, although of higher intensity in the

Congo airmass areas.

FIG. 3. Climatology of mean sea level pressure (shaded, hPa) and 850-hPa wind (vectors, m s21) during (a) JJAS and (b) OND as

simulated by (top, middle, and one-half of bottom row) the 10 CORDEX RCMs in comparison with (bottom row, last two panels)

ensemble and ERA-Interim. Mean sea level data were not available for ARPEGE and RegCM3.
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Thus, RCMs capture fairly well the rainfall season-

ality, although they overestimate rainfall in some areas,

especially over the Ethiopian highlands and Congo Basin

during JJAS and OND, respectively.

2) MEAN SEA LEVEL PRESSURE AND WIND FLOW

PATTERN CLIMATOLOGY

Figures 3a and 3b show the climatological pattern of

mean sea level pressure and 850-hPa wind for JJAS and

OND from the 10 CORDEX RCMs and the ensemble

mean in comparison with ERA-Interim reanalysis (note

that sea level pressure is not available for the CNRM-

ARPEGE and ICTP-RegCM3).

During JJAS the northern part of eastern Africa

covering most of the Ethiopian highlands is dominated

by ameridional ridge of weak high pressure, whereas the

southern and south eastern part of the region is domi-

nated by ridge of strong high pressure associated with

the extended part of Mascarene high. The spatial extent

and intensity of this pressure pattern is well represented

by each RCM in comparison with ERA-Interim re-

analysis. The intensity of strong westerly winds originate

from Atlantic Ocean passes over Sudan, and the East

African low-level jet (Somali jet) diverging out of the

Mascarene high passes over the coast of eastern Africa

are well simulated. These two features are the main

source of moisture for the northern part of Ethiopia

during JJAS (Segele et al. 2009b; Diro et al. 2011). The

weak easterly winds over the Democratic Republic of

Congo, Zambia, and Tanzania regions are also well rep-

resented. Furthermore, the models capture the role of

the Ethiopian and East African highlands that blocks

and recurves the circulation around the mountains.

During OND, much of the East African region is

dominated by weak high pressure, except the central

part of Ethiopia, and this is well represented by eachRCM

in agreement with ERA-Interim. Furthermore, the four

airstreams influencing the regional rainfall patterns are

well simulated (Fig. 3b). Two of the airstreams are in

association with the IndianOcean, the southeasterly and

FIG. 3. (Continued)
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northeasterly components. These airstreams become east-

erly and converge along the equator. The northerly com-

ponent climatologically influences Somalia and southern

Ethiopia, while the southerly component influencesKenya

and Tanzania (Nicholson 1996; Mpeta 2002). The third

airstream is associated with the tropical Congo rain for-

est. This flow is much weaker with a westerly component.

This airstream climatologically influences western por-

tion of equatorial eastern Africa, in particular Uganda,

Rwanda, and Burundi. The final airstream is associated

with dry Saharan air seen over much of Sudan, thus ex-

plaining the smaller portions of rainfall received over this

area during OND.

b. Model bias

Spatial plots of model bias from the reference field

GPCC over the entire domain are analyzed (not shown).

However, it is difficult to draw conclusions about the

model bias over the entire domain as each model shows

a wide variety of bias patterns in different parts of the

domain. Therefore, a paired t test for difference between

mean values of RCMs and observed GPCC for each

subregion at the 0.05 significance level is applied. The

null hypothesis is that there is no difference between the

two means (i.e., the means are equal). The alternative

hypothesis is that there is a difference between the two

means (the means are different). In fact, our assumption

is that the rainfall data follow a normal distribution.

Statistically significant biases that pass a Student’s t test

at the 0.05 level are shown in bold (Table 3).

1) JJAS

During JJAS over NEA, all RCMs and observational

datasets (GPCP and CRU) show statistically difference

values at 0.05 level (Table 3). All RCMs show wet bias,

except REMO and CCLM, which show dry bias.

2) OND

The paired t test for difference between mean values

of RCMs and GPCC shows that all the 10 RCMs in-

dicate wet bias in reproducing the OND rainfall over

EEA, whereas CCLM,ARPEGE,HIRHAM,RACMO,

and REMO show dry bias in reproducing OND rain-

fall over SEA (Table 3). All the biases are statistically

significant at the 0.05 level. The ensemble mean, ERA-

Interim, and the two observed datasets (GPCP and

CRU) have a small bias over SEA that is not statically

significant.

Using the ensemble mean as a reference (Table 4),

CCLM,ARPEGE,RACMO,REMO, and CRCM5 show

statically significant dry bias, whereas WRF and RegCM3

show wet bias over NEA during JJAS. Over EEA dur-

ing OND, CCLM, HIRHAM, RegCM3, and PRECIS

show wet bias, whereas REMO, WRF, and CRCM5

show dry bias that is statistically significant at the 0.05

level. All RCMs show statistically significant bias over

SEA using the ensemble mean as a reference field.

c. Spatial correlation

The consistency of the models in representing the

spatial distribution of rainfall with time for each sub-

region is evaluated using spatial correlation. Figure 4

depicts themagnitude and variability of spatial correlations

of the RCMs, ensemble mean, ERA-Interim, GPCP,

and CRU with GPCC over time during JJAS over NEA

and during OND over EEA and SEA.

The results for NEA show that CRCM5, RACMO,

RegCM3, RCA, and the ensemble mean have high and

consistent correlation with the GPCC data during JJAS

while CCLM, HIRHAM, REMO, PRECIS, ARPEGE,

andWRF are relatively weakly correlated (between 0.7

and 0.4) with the GPCC data. The HIRHAM model

has the lowest correlation withGPCC in this region and

it is noteworthy that the CCLM model poorly repre-

sented the spatial pattern of rainfall during the 1998 La

Ni~na event. The two observeddatasets (GPCPandCRU)

and ERA-Interim have relatively higher and more

consistent correlation with GPCC than the individual

models.

Over EEA, most of the models are inconsistent in

representing spatial rainfall distribution except RACMO,

RegCM3, and the ensemble mean, which have good and

consistent rainfall representation. The CCLM,HIRHAM,

and REMO models have relatively poor correlation in

terms of magnitude and consistency. Again, poor rep-

resentation is displayed by CCLM during the 1997 co-

occurrence of the strong El Ni~no and positive IOD

event, and in REMO during the 1994 IOD event. This

shows the shortcoming of the two models in capturing

the response from ENSO and IOD events. Over this re-

gion, the CRU dataset shows inconsistency in repre-

senting the spatial distribution of rainfall.

Over SEA, all RCMs and ERA-Interim had nearly

same level of consistency in reproducing spatial patterns

of rainfall during OND. Although the two observed

datasets have better agreement with GPCC than in-

dividual models, inconsistency in spatial distribution is

observed for CRU dataset.

d. Annual cycles

Figure 5 illustrates the performance of the CORDEX

RCMs in simulating annual rainfall cycle for the three

subregions. In NEA and SEA, all of the RCMs cap-

ture the shape of the rainfall seasonality well. How-

ever, in EEAmost of the models poorly reproduce the

OND rainfall peak. The GPCP observed data wrongly
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represent the rainfall peak both over NEA and EEA

subregions, while GPCC and CRU indicate nearly the

same pattern of seasonality in all subregions. The wrong

representation of seasonality in GPCP might be due to

its coarse resolution. In all the regions, the ensemble

mean have been found to have relatively good perfor-

mance as compared to individual models. The WRF is

found to be significantly overestimating rainfall over all

three subregions.

In general, there is fairly good agreement between

annual rainfall cycle simulated by CORDEXRCMs and

the reference field (GPCC). The most notable short-

coming in most RCMs is overestimation of the monthly

mean.

e. Taylor diagram

The models’ ability to simulate both the pattern and

amplitude of the observed interannual variation is pro-

vided by a Taylor diagram. Figure 6 summarizes the

pattern correlation (r), root-mean-square difference,

and the amplitude of variation of seasonal mean rainfall

of each RCM, ensemble mean, and ERA-Interim with

respect to the reference field (GPCC) for each of the

three subregions. To provide an overview of observa-

tional uncertainty, GPCP and CRU are also compared

to GPCC and plotted in the same diagram. All the sta-

tistics are computed for 1990–2006.

Over NEA during JJAS, most of the model show

relatively low correlation coefficient compared to the

other subregions (i.e., r , 0.8). RACMO, PRECIS,

REMO, and CRCM5 have relatively high pattern of

correlation and low root-mean-square difference and

has a variation close to the reference field (GPCC). The

ensemble mean has better agreement with GPCC than

individual models (i.e., r 5 0.84) or ERA-Interim-

derived data. ERA-Interim shows extremely high vari-

ation compared to the GPCC. Regarding the observed

datasets, the GPCP agrees best with GPCC. CRU and

multimodel ensemble have nearly the same level of

correlation coefficient, but the ensemble mean shows

lower variation than GPCC, while CRU shows higher

variation than GPCC.

Over EEA during OND, most of the models under-

estimate the magnitude of interannual variation relative

to GPCC, while three models (WRF, CRCM5, and RCA)

overestimate the variation. CCLM, RACMO, CRCM5,

and the ensemble mean have relatively higher correla-

tion and lowRMS errors than other RCMs as well as the

ERA-Interim reanalysis. It has been also noticed that

there is a large spread among observational datasets.

GPCP has a standard deviation higher than GPCC, while

CRU shows a variation much lower than GPCC. But

GPCP has relatively higher correlation and lower root-

mean-square difference than CRU.

Over SEA, all RCMs show a variation lower than the

observed except the WRF, which shows larger than the

observed. ARPEGE, ERA-Interim, and the ensemble

mean have a relatively higher pattern of correlation (i.e.,

r. 0.8) and lower root-mean-square difference than the

rest of the RCMs. The GPCP agrees best with GPCC.

Generally, some regional climate models have out-

performed the derived ERA-Interim (in relation to

the observed GPCC) and others have not; however, the

multimodel ensemble is found generally closer to the

GPCC than individual models as well as the derived

ERA-Interim. The WRF Model has showed a variation

higher than the observed in all subregions. Even though

there is large uncertainty between observational data-

sets, GPCP has better agreement with GPCC than CRU

in all subregions. Particularly over subregion SEA,GPCP

has a correlation coefficient of above 0.99 and has a sim-

ilar interannual variation with GPCC.

TABLE 3. Difference between seasonal mean rainfall between

each RCM and GPCC during 1) JJAS in subregion NEA and 2)

OND in subregions EEA and SEA. Bold values are significant at

the 0.05 level.

Model comparison JJAS (NEA) OND (EEA) OND (SEA)

CCLM–GPCC 20.36 0.65 21.3

ARPEGE–GPCC 0.84 1.23 21.02
HIRHAM–GPCC 0.99 0.53 21.49

RegCM3–GPCC 2.28 0.44 1.29

RACMO–GPCC 0.83 1.15 20.69

REMO–GPCC 20.76 1.37 21.27
RCA–GPCC 0.94 1.25 0.5

PRECIS–GPCC 0.98 0.71 0.96

WRF–GPCC 3.01 1.68 1.62

CRCM5–GPCC 0.84 1.51 0.62
Ensemble–GPCC 0.96 1.05 20.08

ERA-Interim–GPCC 1.8 1.02 20.07

GPCP–GPCC 20.21 0.4 20.02

CRU–GPCC 20.3 20.13 20.18

TABLE 4. Difference between seasonal mean rainfall between

each RCM and the ensemble mean during JJAS in subregion NEA

and OND in subregions EEA and SEA. Bold values are significant

at the 0.05 level.

RCM comparison JJAS (NEA) OND (EEA) OND (SEA)

CCLM–ensemble 21.63 20.4 21.22

ARPEGE–ensemble 20.43 0.18 20.94
HIRHAM–ensemble 20.28 20.52 21.41

RegCM3–ensemble 1.01 20.61 1.37

RACMO–ensemble 20.44 0.09 20.61

REMO–ensemble 22.03 0.32 21.19
RCA–ensemble 20.33 0.2 0.57

PRECIS–ensemble 20.28 20.34 1.03

WRF–ensemble 1.73 0.62 1.7

CRCM5–ensemble 20.43 0.46 0.7
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f. Interannual rainfall variability

The temporal pattern of rainfall over eastern Africa

has a strong interannual rainfall variability associated

with extreme events such as floods and droughts. Pre-

vious studies have shown that the interannual rainfall

variability is strongly associated with perturbations in

the global SSTs, especially over the equatorial Pacific

and Indian Ocean basins (Ogallo 1988; Nicholson and

Kim 1997; Indeje et al. 2000; Saji et al. 1999; Black et al.

2003; Clark et al. 2003 Nyakwada 2009; Omondi et al.

2013). The influence of global SST on eastern Africa

rainfall depends on the season and the region. Gener-

ally, during JJAS El Ni~no conditions produce deficit

rainfall and La Ni~na conditions produce excess rainfall

over the northern parts of East Africa, whereas during

OND the equatorial and southern parts of East Africa

get below average rainfall during La Ni~na and above

average during El Ni~no.

Figure 7 shows time series analysis of area averaged

seasonal rainfall anomalies of the RCMs, the ensemble,

ERA-Interim, and observed (GPCP and CRU) rainfall

over the three subregions in comparison to GPCC.

During JJAS, the observed rainfall variability is well

FIG. 4. Spatial correlations betweenGPCC and the CORDEXRCMs (top) over NEAduring JJAS, (middle) over EEAduringOND, and

(bottom) over SEA during OND.
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reproduced by most RCMs over NEA except for

ARPEGE, which showed some deviation. ERA-Interim

poorly represented the year-to-year variability of rainfall,

which also was shown in Fig. 6 over NEA. Most RCMs

capture the extreme years such as El Ni~no years of 1991,

1997, and 2004 with minimum rainfall whereas during

La Ni~na years (1998, 1999) rainfall is above average.

In EEA, almost all the RCMs realistically simulate the

FIG. 5. Mean annual cycle of rainfall over (top) NEA, (middle) EEA, and (bottom) SEA (mmday21)

from the 10 RCMs, ensemble, ERA-Interim reanalysis, and observations.
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interannual rainfall variability, notably the 1997 high

rainfall event that was associated with strong El Ni~no in

phase with positive IOD. CRU shows low year-to-year

variability of rainfall (also shown in Fig. 6 over EEA

with low standard deviation value). In SEA, the

RegCM3 and WRF do not capture well the interannual

rainfall variability. Although the ERA-Interim reanalysis

and ARPEGE model did not capture the rainfall vari-

ability in the NEA, in the latter two regions they best

represented the observed GPCC rainfall during the

El Ni~no of 1997.

g. Teleconnection

The teleconnection associated with East African rain-

fall is quite complex as several forcings control the rain-

fall variability for various seasons and regions. In this

section, we assess the ability of CORDEX RCMs in cap-

turing teleconnection signals using composite analysis.

The composite of each ENSO and IOD event is formed

separately to examine how well the models are able to

translate the teleconnection signal from the boundary

forcing into the interior of the domain and also to under-

stand the relative influence of the events on the rainfall

variability over the region.

Figure 8 shows the JJAS rainfall anomaly simulated

by CORDEX RCMs and ERA-Interim reanalysis in

comparison to the observation when pure La Ni~na events

are composited (refer to Table 2). Most of the RCMs and

ERA-Interim show a positive rainfall anomaly over large

parts of the Ethiopian highlands and South Sudan in

agreement with observation. This indicates that during

La Ni~na events there is an increase of rainfall over the

northern parts of eastern Africa during JJAS. This

finding is in agreement with previous studies (e.g., Diro

et al. 2011; Gissila et al. 2004; Korecha and Barnston

2007; Segele et al. 2009b, and others) that associated the

positive rainfall anomalies over the Ethiopian highland

during JJAS with La Ni~na, and the negative rainfall

anomalies with El Ni~no.

It should be noted that in our analysis period there is

no pure El Ni~no event to investigate whether the models

can translate the signal into the domain. However, co-

occurrence events of El Ni~no and positive IOD are

studied. Figure 9 represents rainfall anomaly for the co-

occurrence of El Ni~no and positive IOD events during

JJAS. Both simulated and observed results show negative

rainfall anomalies during JJAS over large parts of the

Ethiopian highlands and South Sudan. Most of the

RCMs simulate the negative rainfall anomaly quite well,

which is also a mirror image of La Ni~na impacts. How-

ever, only twomodels (RCAandWRF) capture the drier

anomaly over the northern and eastern parts of the

Democratic Republic of Congo, whereas most of the

FIG. 6. Taylor diagram displaying normalized statistical com-

parison of seasonal mean rainfall of the 10 RCMs and ERA-

Interim reanalysis with observation over (top) NEA during JJAS,

(middle) EEA during OND, and (bottom) SEA during OND.
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other models show wetter anomalies and the ensemble

mean of this region shows no anomaly.

The rainfall anomalies during pure La Ni~na and co-

occurrence of El Ni~no with positive IOD events for

OND are shown in Figs. 10 and 11. Most of the RCMs

correctly simulate negative rainfall anomaly duringOND

in the equatorial and southeastern parts of the region

when La Ni~na years are composited (Fig. 10). A similar

but reverse response is observed in co-occurrence of El

Ni~no with positive IOD composites (Fig. 11), which is

associated with increased rainfall during OND. Similar

findings have been reported in a number of previous

FIG. 7. Time series of CORDEX RCMs, ensemble, and observed rainfall anomalies (mmday21) over (top) NEA during JJAS, (middle)

EEA during OND, and (bottom) SEA during OND.
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studies (e.g., Ropelewski andHalpert 1987; Ogallo 1988;

Indeje et al. 2000; Nicholson and Kim 1997). The warm

phase of ENSO (El Ni~no) is associated with excess

rainfall and flooding, while the cold phase (La Ni~na)

often coincides with extreme drought conditions during

the short rain in much of equatorial East Africa (Ogallo

1988; Nicholson and Kim 1997).

To understand the effects of IOD over the region, the

pure positive and negative IOD composites are plotted

separately. The positive IOD composites for JJAS, pos-

itive IOD composites for OND, and negative IOD

composites for JJAS andOND have been analyzed over

the region (results not shown), and all of the results show

weak and localized rainfall anomalies compared to the

ENSO composites.

In general, results from the composite analysis have

shown that most of the models capture the response of

large-scale signals over eastern Africa during the anom-

alous events with respect to observations, where the

ensemble mean outperforms the individual models.

Both the RCMs and observed results show that ENSO

has a strong association for rainfall over the region while

the effect of IOD is weak and localized.

4. Summary and conclusions

In this study, the performance of 10 CORDEXRCMs

was evaluated for their ability to capture and charac-

terize rainfall patterns over East Africa as well as their

ability to reproduce the response to large-scale global

FIG. 8. As in Fig. 2a, but for JJAS rainfall anomaly (mmday21) during pure La Ni~na conditions.
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signals during the period 1990–2008. In the northern

sector of the region, JJAS is considered to be the long

rainy season as the region receives the largest fraction of

its total annual rainfall in these months. All RCMs re-

alistically simulated the rainfall belt associated with the

ITCZ during this season although most of the models

show wet bias apart from REMO and CCLM, which

showed dry bias. During OND, all RCMs captured well

the ITCZ belt. It was noted that 10 RCMs indicated wet

bias over EEA while CCLM, ARPEGE, HIRHAM,

RECMO, and REMO show dry bias in reproducing

OND rainfall over SEA. CRCM5, RACMO, RegCM3,

and RCA showed high spatial correlations together with

consistency in reproducing spatial patterns of rainfall

over time for JJAS in NEA and RACMO and RegCM3

during OND in EEA. The 10 RCMs had nearly same

level of consistency in reproducing spatial patterns in

SEA sector during OND. Overall, the 10 RCMs con-

sidered in the present study represent the correct shape

of the mean annual cycle of rainfall over both NEA and

SEA, but with a small shift in capturing the correct peak

of the dominant bimodal rainfall regimes in EEA. Gen-

erally, most of the models capture the regional rainfall

anomaly associated with ENSO and IOD in agreement

with the observations. Both model and observed results

showed that ENSO has a strong association for rainfall

over the region while the effect of IOD is weak and

localized. Many studies have shown that downscaling

FIG. 9. As in Fig. 2a, but for JJAS rainfall anomaly (mmday21) during the co-occurrence of El Ni~no and positive IOD.
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global models to the regional scale adds value to

information at these finer scales (Giorgi and Marinucci

1996; Giorgi and Mearns 1999; Giorgi et al. 1993a,b;

Sun et al. 1999a,b; Anyah and Semazzi 2006; Anyah

et al. 2006). We have demonstrated that some regional

climate models used in CORDEX-Africa have out-

performed the ERA-Interim rainfall (in relation to

the observed GPCC) and others have not; however,

the ensemble mean of the RCM output is mostly closer

to the GPCC data than the ERA-Interim. As the

CORDEXRCMs are forced by ERA-Interim reanalysis,

this would suggest that downscaling coarser model

output improves rainfall representation at the regional

scale.

In general, most of the RCMs overestimated rain-

fall in all the three subregions, WRF in particular.

The multimodel ensemble mean outperforms the results

of individual models, and even ERA-Interim, in most of

the areas and time periods as assessed by different cri-

teria. This is likely because of the cancellation of op-

posite signed biases across the models. Similar results

have been shown by Paeth et al. (2011) and in the

CORDEX context by Nikulin et al. (2012). At the level

of individual models it is of concern that many models

produce good results in one region and poor results in

another over the same time period. This would suggest

that some models may be getting correct results in par-

ticular regions for the wrong reasons. It is beyond the

FIG. 10. As in Fig. 8, but for OND.
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scope of this paper to investigate the individual models

in depth but this is a major caveat in interpreting the

results. Despite this, we have demonstrated that the

multimodel ensemble mean simulates eastern Africa

rainfall adequately and can therefore be used for the as-

sessment of future climate projections for the region.
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