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seasons. Our analysis indicates that most of the errors in 
simulating the teleconnection patterns come from the driv-
ing CGCMs. RCMs driven by MPI-ESM-LR, HadGEM2-
ES and GFDL-ESM2M tend to perform relatively bet-
ter than RCMs driven by other CGCMs. CanESM2 and 
MIROC5, and their corresponding downscaled results 
capture the teleconnections in most of the sub-regions and 
seasons poorly. This highlights the relative importance of 
CGCM-derived boundary conditions in the downscaled 
product and the need to improve these as well as the RCMs 
themselves. Overall, the results produced here will be very 
useful in identifying and selecting CGCMs and RCMs 
for the use of climate change projecting over the Eastern 
Africa.

Keywords CORDEX · CMIP5 · Teleconnections · 
Eastern Africa · Rainfall · RCM

1 Introduction

Rainfall over Eastern Africa shows a high degree of inter- 
and intra-annual variability. This rainfall variability impacts 
the economy of the region because of the dependence of 
important sectors on rainfall (e.g. agriculture, water man-
agement, health and energy) and the relatively low adaptive 
capacity of these economies. For example, the two severe 
recent droughts 2008/2009 and 2011 in wide regions of 
Kenya, Ethiopia, Djibouti and Somalia affected food secu-
rity and subjected millions of peoples to famine (FEWS 
NET 2011; Slim 2012; UNOCHA 2011). Previous studies 
have linked the interannual variability of rainfall over the 
region with sea surface temperature (SST) anomalies over 
the tropical Oceans (Ropelewski and Halpert 1987; Nichol-
son and Kim 1997; Clark et al. 2003; Behera et al. 2005). 

Abstract The ability of climate models to simulate 
atmospheric teleconnections provides an important basis 
for the use and analysis of climate change projections. 
This study examines the ability of COordinated Regional 
climate Downscaling EXperiment models, with lateral 
and surface boundary conditions derived from Coupled 
Global Climate Models (CGCMs), to simulate the telecon-
nections between tropical sea surface temperatures and 
rainfall over Eastern Africa. The ability of the models to 
simulate the associated changes in atmospheric circula-
tion patterns over the region is also assessed. The models 
used in the study are Rossby Centre regional atmospheric 
model (RCA) driven by eight CGCMs and COnsortium 
for Small scale MOdeling (COSMO) Climate Limited-
area Modelling (COSMO-CLM or CCLM) driven by four 
of the same CGCMs. Teleconnection patterns are exam-
ined using correlation, regression and composite analysis. 
In order to identify the source of the errors, CGCM-driven 
regional climate model (RCM) results are compared with 
ERA-Interim driven RCM results. Results from the driving 
CGCMs are also analyzed. The RCMs driven by reanaly-
sis (quasi-perfect boundary conditions) successfully cap-
ture rainfall teleconnections in most examined regions and 
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Particularly, the El Niño Southern Oscillation (ENSO) 
(Ogallo 1988; Indeje et al. 2000; Mason and Goddard 
2001; Segele et al. 2009a; Diro et al. 2011b) and the Indian 
Ocean Dipole (IOD) (Saji et al. 1999; Abram et al. 2008; 
Ummenhofer et al. 2009; Bahaga et al. 2015) are suggested 
to be the dominant drivers of the rainfall variability over 
the region. Thus, a better understanding of SST-rainfall tel-
econnections and their simulation by global and regional 
climate models (RCMs) is increasingly important to deliver 
reliable predictions of seasonal to interannual rainfall 
anomalies for disaster prevention (floods and droughts) and 
resource planning (agriculture, water and energy).

Global Climate Models (GCMs) are the primary tools 
for understanding the global climate and its projected 
change under different forcing scenarios (IPCC 2007, 
2013). However, the coarse resolution of GCMs precludes 
them from capturing the effects of local forcings like ter-
rain effects and land-sea contrasts that modulate the cli-
mate signal at finer scales (Giorgi et al. 2001; Wang et al. 
2004; Rummukainen 2010). It also limits their ability to 
reproduce realistic extreme events that are critical to many 
users of climate information (Giorgi et al. 2009). In order 
to respond to the strategic, regional demands of society 
regarding climate variability and climate projection, vari-
ous downscaling techniques have been developed. These 
are broadly categorized into statistical and dynamical 
downscaling techniques. Statistical downscaling develops 
robust statistical relationships between large-scale climate 
variables like atmospheric surface pressure and a local cli-
mate variable like rainfall at a particular place. This rela-
tionship is then mapped to GCM data to obtain the local 
variable response (Hewitson and Crane 1996). The main 
drawback of statistical downscaling is that it assumes the 
derived statistical relationship will not change due to cli-
mate change. On the other hand, dynamical downscaling 
involves the use of numerical models that simulate the cli-
mate over a chosen domain based on fundamental conser-
vation laws and receives forcing GCM data at the domain 
boundaries. Dynamical downscaling include limited-area 
RCMs (e.g. Giorgi and Mearns 1991, 1999) and stretch-
grid atmospheric GCMs (e.g. Déqué and Piedelievre 1995; 
Fox-Rabinovitz et al. 2006).

RCMs are widely used tool for climate process studies 
and climate change projection by using boundary condi-
tions from reanalysis or GCMs output (Giorgi and Mearns 
1999; Wang et al. 2004). By operating at high spatial reso-
lutions, RCMs have the ability to capture small-scale fea-
tures and process that influence the regional climate such 
as topographical influence and small-scale processes. 
However, accurate simulation of precipitation still remains 
a major challenge in RCMs as it depends on many pro-
cesses. For example, Nikulin et al. (2012) show that pre-
cipitation is triggered too early during the diurnal cycle in 

the majority of CORDEX RCMs. Endris et al. (2013) also 
show that most of the CORDEX models failed to reproduce 
the October–December (OND) rainfall peak over equato-
rial part of eastern Africa. Therefore, a process based com-
parison of models with observations is an important step to 
understand limitations of the models and to provide guid-
ance for model improvement. Furthermore, the process 
based evaluation of models provides an important context 
for the interpretation and use of climate change projections. 
This is particulary important for CORDEX data users to 
explore the uncertainity for use of projected data.

Although several works have investigated the capability 
of RCMs to reproduce several features of African clima-
tology (Segele et al. 2009b; Sylla et al. 2009; Paeth et al. 
2011; Nikulin et al. 2012; Endris et al. 2013; Kalognomou 
et al. 2013 and Kim et al. 2014 among others), very few 
studies have attempted to evaluate the performance of 
RCMs in reproducing the large scale processes (e.g. tel-
econnections). Due to the high computational cost to run 
multiple RCMs and/or to force RCMs with output from 
a number of GCMs, those very few studies focused only 
on evaluating the performance of a single RCM driven by 
a single GCM and/or reanalysis datasets. For example, 
Anyah and Semazzi (2007) evaluated the capability of the 
International Center for Theoretical Physics RCM (ICTP-
RegCM3) in reproducing the rainfall variability over east 
Africa and found that the model preserves the relationships 
between the regional rainfall and some of the global tele-
connections (ENSO and IOD). Boulard et al. (2013) evalu-
ated the performance of the Weather Research and Fore-
casting (WRF) model in downscaling large-scale climate 
variability over southern Africa with a particularly attention 
of ENSO. They showed limited skill in the model’s ability 
to reproduce the seasonal droughts associated with El Ninõ 
conditions. Over tropical Americas, Tourigny and Jones 
(2009) evaluated the ability of the Rossby Centre Atmos-
pheric Model (RCA) to downscale SST and large-scale 
atmospheric anomalies associated with ENSO, and found 
that the model reproduces the majority of the documented 
regional responses to ENSO forcing. However, it is well 
known that each model has its strengths and weaknesses 
depending on the season and region chosen for the analysis 
(e.g. Endris et al. 2013; Kalognoumou et al. 2013). Addi-
tionally, the boundary conditions provided to the RCMs 
plays an important role in the model’s ability to propagate 
teleconnective signals into the region of interest. If the 
GCM is unable to capture, for example, the Walker circu-
lation response to ENSO, it is unreasonable to expect the 
RCM to propagate the signal into the region of interest.

In this study, our aim is to examine the ability of two 
RCMs that participated in the COordinated Regional cli-
mate Downscaling EXperiment (CORDEX), with lateral 
and surface boundary conditions derived from reanalysis 
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and CGCMs, to accurately reproduce the observed spati-
otemporal rainfall variability associated with the leading 
climate modes (like ENSO and IOD) affecting the eastern 
Africa on interannual time scales. We examine whether or 
not the downscaling propagates large-scale (teleconnective) 
forcing present in the reanalysis and CGCMs through the 
boundaries of the RCMs into the interior of the domain to 
simulate the local rainfall response. Such study is crucial 
since the capability of the RCMs to accurately simulate cur-
rent climatic conditions associated with large-scale features 
constrains their ability to accurately simulate future climate. 
Obviously this idea is based on the assumption that cur-
rent climate teleconnections with ENSO and IOD continue 
to operate in the same manner under a warming scenario. 
When RCMs are forced by CGCMs, the RCM simulations 
are affected by the combination effect of the imperfect driv-
ing fields and the RCMs’ structural errors. Comparing rea-
nalysis driven and CGCM-driven RCM results with obser-
vational data will help to determine whether errors come 
from the RCMs or driving lateral boundary conditions. To 
our knowledge, this is the first study assessing the ability 
of RCMs to simulate the climate impacts associated with 
ENSO and IOD over eastern Africa using different driving 
dataset as lateral boundary conditions.

The key research questions that we address in the study 
are:

1. Which oceanic basins have a strong relationship with 
Eastern Africa regional rainfall? This will be addressed 
using observed data.

2. How well the models perform at reproducing the 
observed teleconnection patterns (amplitudes and spa-
tial patterns)?

3. How do different boundary forcings (from CGCMs) 
affect the RCM ability to simulate the teleconnections?

4. How well the models represent the anomalous circula-
tion patterns associated with the leading climate modes 
affecting the rainfall over the region?

2  Data and methods

2.1  Study region and areas of analysis

The study region covers the Eastern Africa region (see 
Fig. 1). Because of the complexities of rainfall in the 
region, it is important to categorize the region into homo-
geneous rainfall subregions. As such we first classified the 

Fig. 1  Homogeneous rainfall regions (left) with corresponding annual cycles (right) as categorized using hierarchical agglomerative clustering 
technique
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region into six climatically homogeneous rainfall subre-
gions using Global Precipitation Climatology Centre data 
that has a spatial resolution of 0.5° (GPCC; version 5, 
1901–2006; Rudolf et al. 2010). The regionalization was 
carried out using hierarchical agglomerative clustering 
technique with average linkage based on the R function 
hclust algorithms of Murtagh (1985). Like any other clus-
tering methods, this method has its own limitations. One of 
the limitations of this technique is that it requires the ana-
lyst to specify the appropriate number of clusters. Since 
this study focuses on the large-scale forcings, and we also 
analyze coarse resolution GCM output, we choose to limit 
the number of clusters to six, however it should be noted 
that the number of homogeneous rainfall regions could be 
fewer or greater than this number depending on the objec-
tives of the study. In fact, the result we obtained here is in 
agreement with previous studies conducted over different 
time periods using different observational data such as 
Liebmann et al. (2012) over Africa and Gissila et al. (2004) 
over Ethiopia.

Our analysis focuses on three subregions, which cover 
most of eastern Africa, namely: the northern part of East-
ern Africa (NEA), Equatorial Eastern Africa (EEA) and 
the Southern part of Eastern Africa (SEA) (Fig. 1). NEA 
covers most the Ethiopian highlands and South Sudan, and 
some parts of Eritrea and Sudan, which has a rainfall maxi-
mum during boreal summer (June–September) and a pro-
nounced dry season in boreal winter. EEA covers most of 
Somalia, Kenya, Uganda, and South Eastern parts of Ethio-
pia, and is characterized by a bimodal rainfall distribution 
with the major rainfall season in March–May (MAM) and a 
shorter rainfall season in October–December (OND). SEA 
lies south of the equator and is mainly characterized by 
long unimodal rainfall distribution extending from October 
to April.

The seasons analyzed in this study are JJAS for NEA, 
and OND for EEA and SEA. MAM rainfall season is not 
included in the analysis because rainfall teleconnections 
(i.e., correlations) with SSTs is much weaker (Indeje et al. 
2000) and so is less usefully assessed against model data.

2.2  Data

2.2.1  Observed data

The observed rainfall dataset utilized in this study is the 
GPCC. This dataset is a gauge-based gridded observational 
dataset available at a 0.5° spatial and monthly temporal 
resolution. The observed SST data used in this study is the 
monthly mean National Oceanic and Atmospheric Admin-
istration Optimum Interpolation SST version 2 (NOAA_
OI_SST_V2) gridded observational dataset, provided by 
the NOAA-CIRES Climate Diagnostics Center, Boulder, 

USA (http://www.esrl.noaa.gov/psd/data/gridded/data.
noaa.oisst.v2.html). The NOAA_OI_SST_V2 product inte-
grates both in situ and satellite data from November 1981 
to present at a 1° spatial resolution. These SST monthly 
fields are derived by a linear interpolation of the weekly 
optimum interpolation (OI) version 2 fields to daily fields 
and then averaging the daily values over a month (Reynolds 
et al. 2002). More details about the product can be found in 
Reynolds et al. (2002). Surface winds and sea level pres-
sure dataset are based on ERA-Interim reanalysis (Dee 
et al. 2011). We note that reanalysis is essentially model 
simulations that incorporate all available observations at 
the time of the processing.

2.2.2  Model data

In this study we used the results from two CORDEX 
RCMs, namely the Rossby Centre regional atmospheric 
model (RCA) (Samuelsson et al. 2011) and COnsortium 
for Small scale MOdeling (COSMO) Climate Limited-
area Modelling (COSMO-CLM or CCLM) [Baldauf et al. 
2011]. Both models have first been run in an “evaluation” 
mode, i.e. driven by ERA-Interim for the period 1989–
2008 (see Nikulin et al. 2012; Panitz et al. 2014). Thanks 
to SMHI institution, another RCA model evaluation run is 
performed and available for the period of 1980–2010. For 
the historical CGCM driven runs, which cover the period 
1950–2005, RCA has been driven by 8 CGCMs and CCLM 
by 4 of the same CGCMs (see Dosio et al. 2015; Dosio and 
Panitz 2015 for CGCM driven CCLM runs). All the COR-
DEX Africa simulations were at spatial grid resolution of 
0.44°. Table 1 presents a list of RCMs and driving CGCMs 
considered in the present study.

The CMIP5 CGCMs have different ensemble members 
(r1, r2, r3 etc.) different only in initial conditions around 
1850, while the physics and the greenhouse gas forcing 
are the same. For CORDEX Africa simulations only the 
first member from the CMIP5 CGCMs is used to force the 
RCMs with the exception of the EC-EARTH model from 
which the 12th ensemble member was used. All CGCM 
and RCM rainfall data were interpolated to a common grid, 
similar to the observed GPCC dataset 0.5° resolution. As 
mentioned above, ERA-Interim driven RCA model run 
is available for the period of 1980–2010 as well as 1989–
2008. We compared these two RCA evaluation runs with 
observation to check the sensitivity of teleconnection pat-
terns to the choice of the period and found teleconnection 
patterns are not sensitive to the choice of the period. We 
therefore chose the 1989–2008 period for both RCM ERA-
Interim downscalings as a common period. The CGCM 
and downscaled CGCM data were extracted from 1982 to 
2005 to maximise the overlap with observed SST data to 
compute statistical relationships and quantify teleconective 
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events. Although this period is not identical to that of the 
downscaled ERA-Interim runs, we again found that the 
assessment of teleconnection patterns were not sensitive 
to the choice of the period. Thus in all cases, our analy-
sis focuses on the period of 1982–2005, with the excep-
tion of the ERA-Interim driven evaluation downscaling 
(1989–2008).

2.3  Methods

To assess the models’ ability in representing teleconnection 
patterns, we follow an approach similar to Langenbrunner 
and Neelin (2013). Spearman’s rank correlation and lin-
ear regression are used to calculate the seasonal precipita-
tion teleconnections between regional rainfall and SSTs in 
a number of oceanic regions for the selected time period. 
The Spearman’s rank-order correlation is a non-parametric 
rank statistic that measures the strength of the associa-
tion between two variables (Hauke and Kossowski 2011). 
Unlike Pearson’s product-moment correlation, it is a robust 
method in the presence of outliers, and does not require 
the assumption of normality. It also does not assume linear 
relationships, which means it is well-suited for exponential 
and logarithmic relationships. Linear regression is widely 
used for assessing the relationship between precipitation 
and SSTs. One limitation of this method is the assumption 
that precipitation data follow a Gaussian distribution, but 
in reality it is zero bounded and demonstrates non-gaussian 
behavior.

The analysis procedure is constructed in the following 
way. First, seasonal means have been computed for both 
precipitation and SST fields. Since teleconnection signals 
are the main focus of this study, long-term changes/trends 
were removed from both observed and simulation time 
series. Thus, all seasonal time series have been detrended 
linearly at each grid point. Each SST grid-point is then cor-
related against a spatially averaged rainfall time series to 
identify the oceanic regions that have robust relationships 

with the regional seasonal rainfall, as well as to assess the 
models’ ability to simulate the different patterns of telecon-
nections with each region. Once we have identified regions 
that have a strong relationship with regional rainfall, pre-
cipitation at each grid-point is regressed against a spatially 
averaged SST time series. The aim is to examine the ability 
of the model to capture the spatial pattern as well as the 
amplitude of the teleconnection patterns. Appropriate tests 
are used in the rank and linear methods to resolve grid-
points that meet or pass 5 % significance level. Student’s 
t test is used for computing the statistical significance for 
linear regression by assuming independent normal distribu-
tions. The statistical significance for the spearman’s rank 
correlation is computed using z-test.

Finally, composite analysis is used to assess the models’ 
ability to represent the anomalous circulation patterns asso-
ciated to the dominant modes affecting the rainfall over the 
region. Details of this method are presented in section “d” 
under results and discussion part.

3  Results and discussion

Before analyzing how the climate models represent the 
teleconnection patterns, we first clarify two important 
points. The first point is that caution needs to be taken 
when comparing downscaled CGCMs climatologies 
(the historical runs) as a function of real calendar time, 
especially in relation to observational dataset. It is not 
expected the simulation of natural variability in down-
scaled CGCM simulations to follow the same time evolu-
tion as the observations. This is related with the experi-
mental design of the driving CMIP5 CGCM simuations. 
The CMIP5 CGCMs are the so-called free-running sim-
ulations, and natural variability in these models is not 
constrained to occur in the same phase sequence as the 
real world (Taylor et al. 2012). In other words, there is 
no input to the models to control the natural or internal 

Table 1  List of CORDEX 
RCMs and the driving CMIP5 
CGCMs used

RCA is driven by 8 CGCMs, while CCLM driven only by 4 CGCMs. All model dataset were obtained 
from the Earth System Grid Federation (ESGF) web portals

CGCMs CGCMs Horizontal  
resolution

RCMs Institute and country

RCA CCLM

CNRM-CM5 1.4° × 1.4° ✓ ✓ CNRM, France

EC-EARTH 1.125° × 1.12° ✓ ✓ European Consortium

HadGEM2-ES 1.875° × 1.25° ✓ ✓ MOHC, United Kingdom

MPI-ESM-LR 1.9° × 1.9° ✓ ✓ MPI, Germany

CanESM2 2.8° × 2.8° ✓ CCCma, Canada

GFDL-ESM2M 2.5° × 2.0° ✓ NOAA/GFDL, United States

MIROC5 1.4° × 1.4° ✓ CCSR/NIES/JAMSTEC, Japan

NorESM1-M 2.5° × 1.9° ✓ NCC, Norway
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variability in the simulated climate. To ensure the models 
to fellow the same phase with the simulated variability of 
the real world, the models either must be run in a forecast 
mode (i.e., models must be initialized to the current state 
of the coupled ocean–atmosphere system) (Yang et al. 
2009) or in forced projection mode (i.e., models must 
be forced with observed SSTs) (Kosaka and Xie 2013). 
However, this is not the case for the CMIP5 CGCM runs. 
Therefore, like the driving CGCM simulations, it is not 
expected the simulated variability in downscaled CGCMs 
sequence to match in phase with reality. The models can 
still simulate the statistical properties of climate features. 
Thus, in our analysis for models driven by CGCMs, SST 
from the parent CGCM and rainfall from the RCMs is uti-
lized to compute SST-rainfall teleconnections. However, 
for RCMs driven by reanalysis dataset, it is expected that 
the simulated variability occur temporally in phase with 
reality, so an observed SST dataset is used to analyze 
the teleconnection patterns. For the analysis of CGCM 
results, we use monthly precipitation and SST data from 
the CMIP5 CGCMs.

The second point concerns methods of assessing tel-
econnections for the multi-model ensemble mean. One 
approach, to obtain the teleconnection of ensemble mean, 
is by averaging the different model files to form a sin-
gle file before computing the teleconnections, however, 
this is misleading as it smoothes the variability. Another 
approach is by calculating the teleconnections for each 
ensemble member (RCM realization) individually and 
average the patterns together later. While this is more 
widely used, obtaining a test of statistical significance 
becomes complicated, as one cannot easily take an aver-
age of significance tests across different models. A third 
approach (the option we have chosen) is by concatenat-
ing time series of the available models and then com-
pute the teleconnection from the concatenated data as it 
allows computation of significant values. It is expected 
that too many significant correlations would emerge from 
this method, as there are a large number of observations 
as a result of the concatenation. To reduce the chances 
of obtaining erroneous/excessive significant correlations, 
an adjustment has been made to p values using Bonfer-
roni correction (Bland and Altman 1995). Bonferroni 
correction is a statistical method used to correct p values 
when several dependent or independent statistical testes 
are being performed simultaneously on a single data-
set. Accordingly, we obtained a new critical value for 
the concatenated data (0.0125) by deviding the critical p 
value (0.05) with the number of hypothsises being tested 
(4), with p value <0.0125 to be significant. We noted that 
apart from being able to obtain significant correlation in 
this approach, the teleconnection patterns obtained from 
the last two methods are almost identical.

3.1  Teleconnection patterns resolved though Spearman 
rank correlation

In order to identify oceanic regions that have a robust rela-
tionship with regional rainfall and also to assess the mod-
els’ ability to simulate the spatial pattern of the teleconnec-
tion, area averaged seasonal rainfall in each homogeneous 
rainfall subregion is correlated with concurrent grid point 
SSTs. These relationships are shown in Fig. 2a–c for the 
models and observation. In each case, the cross-hatches 
indicate statistically significant correlations at the 5 % 
level. Here significant correlations are computed using 
z-test statistic. The test statistics assumed to follow the 
normal distribution under the null hypothesis (i.e., no cor-
relation). As has been mentioned above, RCA model was 
driven by 8 CGCMs, whereas CCLM was driven by 4 com-
mon CGCMs. For direct inter-comparison of CGCM and 
downscaled results, each Figure contains two panels (top 
and bottom). In the top panel, the first column shows the 
observational dataset, then the 4 common driving CGCMs 
and finally the CGCM ensemble mean; the second column 
shows the results of RCA driven by ERA-Interim, 4 com-
mon CGCMs and the ensemble mean; and the third column 
is similar to the second column, but for CCLM. In the bot-
tom panel are the results of the remaining 4 CGCMs (first 
column) and the downscaled RCA results (second column).

Figure 2a shows the spearman’s rank correlations 
between de-trended JJAS rainfall area-averaged over NEA, 
against de-trended concurrent grid-point SSTs. Hatching 
indicates statistically significant correlations at the 5 % 
level. The observed dataset (GPCC) shows that JJAS rain-
fall in the northern part of the region has significant cor-
relation with SSTs in Eastern equatorial Pacific—a positive 
rainfall anomaly tends to occur during the cold phase of 
ENSO while dry conditions prevail during the warm phase 
ENSO. This is consistent with previous studies of Segele 
et al. (2009a) and Diro et al. (2011b), which use rain gauge 
rainfall data, and observed SST. This signal is also well 
captured by ERA-Interim driven RCMs. Mixed results are 
found in the CGCMs and the downscaled CGCM data. In 
some cases both CGCMs and corresponding downscaled 
results show similar teleconnection patterns, but in other 
cases the RCMs either deteriorate or improved the telecon-
nection signal. For example, EC-EARTH and MPI-ESM-
LR and their corresponding downscaled results fail to 

Fig. 2  a Correlations of JJAS rainfall averaged over NEA, against 
concurrent grid-point SSTs. Hatching indicates regions where the cor-
relation is statistically significant at the 5 % level. b Correlations of 
OND rainfall averaged over EEA, against concurrent grid-point SSTs. 
Hatching indicates regions where the correlation is statistically sig-
nificant at the 5 % level. c Correlations of OND rainfall averaged over 
SEA; against concurrent grid-point SSTs. Hatching indicates regions 
where the correlation is statistically significant at the 5 % level

▸
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Fig. 2  continued
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Fig. 2  continued
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capture the positive correlation observed in our reference 
dataset (i.e., GPCC) over tropical Atlantic Ocean. Simi-
larly, CanESM2, MIROC5 and corresponding downscaled 
results RCA (CanESM2) and RCA (MIROC5) show strong 
negative correlations with central Indian Ocean, which is 
not observed in our reference dataset. In those cases it is 
clear that the errors primarily originated from the driv-
ing CGCMs and the RCMs are unable to improve the tel-
econnection patterns. In few cases the RCMs deteriorated 
or improved the teleconnection patterns. For instance, 
NorESM1-M shows positive correlation with eastern 
equatorial pacific (which is opposite to the observed sig-
nal), while the downscaled result RCA (NorESM1-M) 
reproduced well the observed patterns. Similarly, GFDL-
ESM2M shows strong positive correlations over the cen-
tral Indian Ocean, whereas the corresponding downscaled 
result exhibit relatively good agreement with the obser-
vation (see Fig. 2a lower panel). These improvements in 
downscaled simulations might be due to the better repre-
sentation of sub-GCM grid scale forcings by the RCM or 
because of the possible cancellation of errors produced by 
the RCM and those from the driving CGCM. Conversely, 
CNRM-CM5 captured the teleconnection with eastern 
equatorial Pacific Ocean, while the RCMs deteriorated the 
signal, especially RCA model.

Figure 2b represents the correlations between de-trended 
OND area-averaged rainfalls over EEA, against de-trended 
concurrent grid-point SSTs. During OND, warmer (colder) 
than average SSTs throughout the western Indian Ocean 
and equatorial Pacific Ocean are associated with enhanced 
(decreased) rainfall over the equatorial part of Eastern 
Africa. The correlations over the equatorial Pacific Ocean, 
however, are weaker compared to the western part of the 
Indian Ocean, and this suggest that the IOD is the domi-
nant rainfall driver for the equatorial Eastern Africa region 
during OND. This is in agreement with the recent study of 
Bahaga et al. (2015) who indicated that the positive phase 
of IOD produces more rainfall (compared to the positive 
phase of ENSO) over the EEA by enhancing the moisture 
influx from Congo basin. The majority of the models, both 
CGCMs and the RCMs, simulated positive correlations 
between western Indian Ocean SST and the rainfall over 
EEA. Over all, the ERA-Interim driven downscaled results 
show better agreement with observed spatial teleconnec-
tion patterns than the CGCM driven downscaled results. It 
can be seen that disagreements exist in the CGCM down-
scaled results in reproducing the observed teleconnection 
patterns. The most notable feature is that EC-EARTH, 
CanESM2, MIROC5 and their downscaled results show 
opposite teleconnection patterns over Eastern equatorial 
Pacific Ocean. This clearly reflects the impact of the driv-
ing CGCM in producing a wrong signal in the downscaled 
results. MPI-ESM-LR, GFDL-ESM2M, NorESM1-M 

and their corresponding downscaling results overestimate 
the strength of the teleconnections over Eastern equato-
rial Pacific. This overestimation in downscaled results 
are likely primarily associated with the respective driving 
CGCMs, however some error is attributable to the RCMs 
as ERA-Interim driven RCM simulations also overestimate 
the correlations over the equatorial Pacific Ocean. Unlike 
NEA (Fig. 2a), there is a similarity between the RCM 
results and their respective driving CGCM results in repro-
ducing the teleconnection patterns in EEA (Fig. 2b).

Figure 2c is similar to Fig. 2b, but for SEA. Similar tel-
econnection patterns are observed as EEA, but the highest 
correlations are shifted to the central Indian Ocean instead 
of Western part of Indian Ocean and spatially there is less 
statistical significance in the correlations than the case of 
EEA. Despite this, we suggest that the central Indian Ocean 
is an important driver for the rainfall variability over SEA 
as suggested by Rowell (2013). Overall, the ERA-Interim 
driven RCM simulations captured the pattern and strength 
of teleconnections better than the CGCM-driven RCM 
simulations. CanESM2 and its corresponding simulation 
failed to reproduce the positive correlation over tropical 
Indian and Pacific Ocean. Similarly, MIROC5 and its cor-
responding downscaled result failed to represent the posi-
tive relationship between the SSTs over equatorial Pacific 
Ocean and rainfall over SEA. This again reflects the effect 
of boundary conditions for the wrong teleconnections in 
the downscaled results.

It is worth noting that the teleconnections between SSTs 
and rainfall over EEA and SEA (Fig. 2b, c) are generally 
very similar in the CGCM simulations and their downscaled 
results than the case of NEA (Fig. 2a). This might be related 
with the processes that drive the seasonal rainfall in the 
respective regions. As suggested by previous studies (Indeje 
et al. 2000), OND rainfall over EEA and SEA is mainly 
controlled by large-scale features, while both local and 
large-scale features control JJAS rainfall over NEA (Diro 
et al. 2011a; Endris et al. 2013). Thus it is expected that a 
discrepancy might exist between the RCM and the respec-
tive driving CGCM simulations over a region where mes-
oscale processes have important influence on rainfall, as the 
CGCMs cannot adequately represent small-scale features.

It is also important to mention that the similarity 
between the downscaled ERA-Interim and the observed 
patterns is much greater than the similarity between the 
downscaled CGCM and the original CGCM patterns 
(Fig. 2a–c). We further assess this by analyzing and com-
paring the deviation of the reanalysis-driven teleconnection 
patterns from observation and/with deviation of CGCM-
driven simulations from the CGCMs (not shown). The 
results show that the RCMs change teleconnection patterns 
from CGCMs much more than they change patterns when 
driven by reanalysis dataset. This is particularly true over 
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topographically complex region (NEA) where the local 
rainfall is controlled by both mesoscale and large-scale pro-
cesses. As noted above, the interaction between small-scale 
and large-scale features might cancel out or increase the 
noise when downscaled if there are unrealistic features in 
the driving fields of the CGCM.

It is, however, difficult to assess the individual model 
performance since some models capture some telecon-
nections but not others. Thus an objective and quantitative 

approach is applied by calculating the spatial (pattern) 
correlation of temporal correlations. Figure 3 represents 
the pattern correlation of correlation coefficients between 
observation and each model. Due to the curvature of the 
Earth, the actual area represented by a latitude/longitude 
grid sample decreases with latitude. Thus, to ensure that 
each grid point is weighted by the area it represents, the 
correlation values at each grid-point are multiplied by the 
square root of the cosine of latitude.

Fig. 3  Pattern correlation of 
correlation coefficients between 
the models and observation 
a over NEA (JJAS), b EEA 
(OND) and c SEA (OND). 
Correlations are weighted with 
respect to latitude
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The ERA-Interim driven RCM runs perform better than 
any CGCM runs in reproducing the spatial pattern of tel-
econnections in every subregion and season, but again there 
is a wide disagreement in CGCM-driven RCMs between 
one another and with the observation. There is also no clear 
improvement by the RCMs of their driving CGCM results. 
For example, over NEA during JJAS (Fig. 3 top panel), 
CNRM-CM5 shows a positive pattern correlation with the 
observed GPCC, but its corresponding downscaled results 
(both by RCA and CCLM model) show negative pattern 
correlation i.e. RCMs have deteriorated the teleconnection 
relationship. In contrast, NorESM1-M and MPI-ESM-LR 
show a negative correlation, while their downscaled results 
improve the correlation. Over EEA and SEA during OND 
(Fig. 3 middle and bottom panel), HadGEM2-ES, MPI-
ESM-LR, GFDL-ESM2M and Ensemble Mean captured 
the pattern correlation better than any other models, while 
CanESM2 and MIROC5 performed poorly. As it was dis-
cussed earlier, there is a similarity between the RCM simu-
lations and their driving CGCMs simulations in reproduc-
ing the spatial pattern of teleconnections over EEA and 
SEA during OND.

In general, results from the correlation analysis have 
shown that ENSO has a strong association with rainfall 
over the northern part of the region during JJAS, while 
the effect of IOD is more evident for equatorial and south-
ern part of the region during OND. It is also clear that the 
ERA-Interim driven RCMs outperform the CGCM-driven 
RCMs, suggesting that boundary conditions from the 
CGCM are indeed is the main contributor to poor skill in 

representing the response to teleconnections in the RCMs. 
It is also worth mentioning that similarities in SST-rainfall 
teleconnection patterns between the RCM simulations and 
respective driving CGCM simulations are noticeable over 
regions where the rainfall is primarily controlled by large-
scale (synoptic-scale) features, with the RCM simulations 
conserving the overall regional patterns from the forcing 
models. Differences in RCM simulations from correspond-
ing driving simulations are noted mainly over northern part 
of the domain which is most likely related to mesoscale 
processes that are not resolved by CGCMs.

3.2  Teleconnection pattern resolved through linear 
regression

To evaluate the ability of individual models to simulate 
both the patterns and amplitude of rainfall teleconnections, 
a regression analysis was applied to SST indices in Oce-
anic regions that have strong correlations with eastern Afri-
can rainfall. The SST regions used to compute indices are 
indicated in Fig. 4. These regions have been selected based 
on Fig. 2a–c and literatures that describe the relationship 
between Eastern Africa rainfall and SST (e.g. Ogallo 1988; 
Saji et al. 1999; Ummenhofer et al. 2009; Diro et al. 2011b; 
Rowell 2013). For the Pacific, the NINO3.4 index, which 
is the average of SST over 5°S–5°N, 170°–120°W, is used 
to measure ENSO variability. For the Indian Ocean, we use 
the standard definition of IOD (Saji et al. 1999), which is 
the difference between the area average SST in the IODW 
region (10°S–10°N, 50°–70°E) and IODE region (10°S–0°, 

1. NINO3.4 index - average of 5°S–5°N, 170°–120°W

2. IOD - averages of 10°S–10°N, 50°–70°E minus 10°S–0°, 90°–110°E

3. IODC - average of 25°S–10°N, 55°–95°E

4. TADI - averages of 5°–25°N, 55°–15°W minus 20°S–0°, 30°W–10°E

Fig. 4  Location of SST regions used to compute indices in the analysis
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90°–110°E). Also the central Indian Ocean Index (CIOD), 
which is the average of SST over 25°S–10°N, 55°–95°E, is 
used following Rowell (2013). In the Atlantic, a Tropical 
Atlantic Dipole Index (TADI) is defined as the difference 
between tropical North and South Atlantic indices (aver-
ages of 5°–25°N, 55°–15°W minus 20°S–0°, 30°W–10°E), 
following Enfield et al. (1999).

As discussed earlier, the main advantage of using regres-
sion over the Spearman rank correlation is that we can inter-
pret the teleconnections in terms of changes in the magnitude 
of the physical variables, which in this case is rainfall rate 
per degree change of SST in the different ocean regions. It is 
important to note that linear regression makes a few assump-
tions about the data (e.g. linearity and normality). Thus we 
checked the sensitivity of teleconnection patterns to the sta-
tistical assumptions going into the calculations with Spear-
man’s rank method, which does not make such assumptions 
(Fig not shown). The test confirmed that teleconnection pat-
terns are not sensitive to the statistical methods employed. 
As has been noted by Langenbrunner and Neelin (2013), tel-
econnection patterns defined with linear regression are use-
ful for questions that involve the amplitude of the signal.

Figures 5a shows observed and modeled rainfall telecon-
nections for the JJAS season against NINO3.4 as estimated 
by linear regression. Stippled patterns indicate statistically 
significant regression coefficients at the 5 % level. Here 
student’s t-test is used to resolve grid points that meet or 
pass 5 % significance level. The test statistics assumed to 
follow the t-distribution under null hypothesis regression 
slop of zero. Negative coefficients occur over most of the 
northern part of the domain indicating that rainfall is above 
normal when the index is negative, and the rainfall is below 
normal when the index is positive. The majority of models 
reproduce these observed features. Both RCMs driven by 
CNRM-CM5 poorly simulate the teleconnection patterns 
against Niño3.4 index, while driving CGCM (CNRM-CM) 
reproduced the pattern better than the downscaled results. 
GFDL-ESM2M and NorESM1 produced wrong signal over 
the northern part of the domain. The regression coefficients 
between JJAS rainfall and TADI were also calculated (not 
shown). The results show that TADI has week and local-
ized effect over the region during JJAS compared to the 
influence of ENSO, and there is a disagreement among the 
models in capturing the teleconnections patterns.

Rainfall teleconnections for the OND season against 
NINO3.4 and IOD index estimated by linear regression are 
indicated in Fig. 5b, c, respectively. Both indices have a 
positive relationship with the regional rainfall, but the IOD 
rainfall relationships are stronger than the ENSO rainfall 
relationships, and this indicates the influence of the IOD 
on regional rainfall during OND is higher than ENSO. 
The majority of the models reproduced the teleconnection 
against both indices. Once again there is a clear effect of 

the CGCM-supplied boundary conditions in simulating 
the teleconnection patterns. For example, the wrong signal 
in EC-EARTH, CanESM2 and MIROC5 over NINO3.4 
region resulted in wrong teleconnection patterns in their 
corresponding downscaled results (Fig. 5b). Similarly, the 
wrong teleconnection signal in CanESM2 and MIROC5 
models against IOD affected the teleconnection in their 
downscaled results (Fig. 5c).

To understand the effect of the central Indian Ocean over 
the region, regression coefficients between OND rainfall 
and CIOD were calculated (not shown). The CIOD has a 
large influence in the southern region of the domain with 
excess (deficit) rainfall being associated with warming 
(cooling) of the central Indian Ocean as shown by Row-
ell (2013). Like the case of ENSO and IOD, differences in 
regional simulations associated with the CIOD originate 
mainly from the respective CGCM fields (not shown).

Figure 5a–c provide a spatial assessment of teleconnection 
patterns over the entire Eastern Africa region, and one can see 
that there is often disagreement between the CGCMs as well as 
the downscaled results in different regions. We further assess 
and summarize the ability of the models to reproduce the spa-
tial pattern of teleconnections and represent the amplitude of 
these patterns in each homogeneous rainfall sub-regions using 
Taylor diagrams (Taylor 2001). The Taylor diagrams in Fig. 6 
show the spatial root mean square deviation and spatial cor-
relation of regression field (i.e. regression coefficients from 
Fig. 5a–c, and regression coefficients against TADI and CIOD 
discussed previously) of models with respect to the reference 
field in each homogeneous rainfall sub-regions. The spatial 
root mean square deviations (spatial standard deviation) of the 
models are normalized against the spatial standard deviation 
of the observation, and this spatial standard deviation is used 
as a measure of the teleconnection amplitudes. Examination of 
spatial patterns of teleconnections based on pattern correlation 
demonstrated that similarties between the regional simulations 
and the respective CGCM simulations are evident, with the 
RCM simulations maintaining the regional patterns from the 
forcing models. Concering the amplitude of teleconnections, 
CGCMs generally tend to underestimate the amplitude, while 
the RCMs overestimate it in most of the subregions against the 
different indices (Fig. 6a, b). The high amplitude of telecon-
nection (i.e., higher spatial standard deviation) in the RCM 
simulations might be directly due to better precipitation cap-
ture, enhanced by a better-resolved topography. On the other 
hand, the low amplitude of teleconnection in CGCMs may be 
assocaited with a poorly resolved topography and other small-
scale features due to coarse resolution. The other possibility 
for the discrepancy of the amplitude was likely due to the 
interpolation as we re-gridded the coarse resolution data to a 
higher resolution (0.44°). However, re-gridding the high reso-
lution dataset into coarse resolution (2°) gave nearly identical 
results.
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Fig. 5  a JJAS rainfall teleconnections, as diagnosed through a linear 
regression analysis of rainfall against the Nino3.4 index. Stippling 
indicates regions where the regression coefficient is statistically sig-
nificant at the 5 % level. Units are mm day−1 °C−1. b OND rainfall 
teleconnections, as diagnosed through a linear regression analysis of 
rainfall against the Nino3.4 index. Stippling indicates regions where 

the regression coefficient is statistically significant at the 5 % level. 
Units are mm day−1 °C. c OND rainfall teleconnections, as diagnosed 
through a linear regression analysis of rainfall against the IOD. Stip-
pling indicates regions where the regression coefficient is statistically 
significant at the 5 % level. Units are mm day−1 °C−1
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3.3  Simulating mean climate

Finally, we evaluated the models’ performance for sim-
ulating the mean climate to check if there is straight-
forward relationship to their performance in captur-
ing the teleconnections. Taylor diagrams are used to 

compare model performance for the annual cycle of 
rainfall with observation in each homogeneous rain-
fall sub-regions (Fig. 7). Overall, the models produce 
better annual cycles of rainfall in NEA and SEA (over 
uni-model rainfall regions) than in EEA (bi-model rain-
fall region). The ERA-Interim driven RCMs reproduce 

Fig. 5  continued
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the annual cycles better than CGCM driven RCMs and 
parent CGCMs. GFDL-ESM2 and NorESM1-M poorly 
reproduce the annual cycle in NEA (i.e. correlations less 
than 0.8). HadGEM2-ES, GFDL-ESM2M, NorESM1-M 
and their corresponding downscaled results are among 
poorly performing models in EEA. CanESM2, MIROC5, 

NorESM1-M and GFDL-ESM2M overestimate the stand-
ard deviation over SEA, while CNRM-CM5 underes-
timates it. From these figures it appears that the ability 
of the models in reproducing the teleconnections is not 
directly related to their ability in representing the clima-
tological rainfall pattern.

Fig. 5  continued
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3.4  Circulation anomalies

Composite analysis is used to assess the ability of the 
models to represent key regional anomalous atmospheric 

circulation patterns associated with ENSO and IOD vari-
ability. ENSO and IOD years are identified from each 
CGCM and observation, by calculating the Oceanic Niño 
Index (ONI) and Dipole Mode Index (DMI), respectively.

Fig. 6  a Taylor diagrams for the standardized amplitude and spa-
tial correlation of precipitation teleconnections in NEA during JJAS 
against NINO3.4 (top left), NEA during JJAS against TADI (top 
right), EEA during OND against NINO3.4 (lower left) and SEA 
during OND against NINO3.4 (bottom right). On the Taylor dia-
grams, angular axes show spatial correlations between modeled and 
observed teleconnections; radial axes show spatial standard devia-
tion (root-mean-square deviation) of the teleconnection signals in 
each area, normalized against that of the observations. Circles are for 
GCMs, triangles are for RCA and diamonds for CCLM model. b Tay-

lor diagrams for the standardized amplitude and spatial correlation 
of OND rainfall teleconnections in EEA against IOD (top left), EEA 
against CIOD (top right), SEA against IOD (lower left) and SEA 
against CIOD (lower right). On the Taylor diagrams, angular axes 
show spatial correlations between modeled and observed teleconnec-
tions; radial axes show spatial standard deviation (root-mean-square 
deviation) of the teleconnection signals in each area, normalized 
against that of the observations. Circles are for GCMs, triangles are 
for RCA and diamonds for CCLM model
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To identify the ENSO years, we follow an approach sim-
ilar to da Rocha et al. (2014). The ONI based on the SST 
anomaly in Niño3.4 region (120°–170°W and 5°S–5°N) is 
used to identify El Niño and La Niña years. Here the anom-
aly is calculated relative to a climatological seasonal cycle 
based on the years 1982–2005. A given year is defined as 
El Niño or La Niña year when ONI value is higher (lower) 
than a positive (negative) threshold for at least five con-
secutive overlapping seasons, defined as the average of 
three consecutive months of that year. The NOAA Cli-
mate Prediction Center (CPC) uses a threshold of ±0.5 °C, 
while here, similar to da Rocha et al. (2014), the CGCM 

thresholds are based on their respective ONI standard 
deviation (Sd). The reason is that some models might show 
excessive number of El Niño and La Niña years due to the 
high Sd in Niño3.4 region if a ±0.5 °C threshold is used.

The CGCMs’ thresholds for El Niño and La Niña are 
defined by the following criteria:

Ti is the threshold of the ith CGCMSdi is the ONI Sd of the 
ith CGCMC is a constant (or fixed value) = 0.47, which is 
the ratio between a threshold used by CPC (±0.5) and ONI 
Sd from NOAA for the period of 1982–2005 (1.07).

Ti = Sdi ∗ C

Fig. 6  continued

Author's personal copy



2839Teleconnection responses in multi-GCM driven CORDEX RCMs over Eastern Africa

1 3

A similar approach is used to identify the IOD years. 
IOD years are identified using the DMI (Saji et al. 1999), 
which is calculated as the SST anomaly difference between 
the western equatorial Indian Ocean (50°–70°E and 
10°S–10°N) and south-eastern equatorial Indian Ocean 
(90°–110°E and 10°–0°S). Like ONI, this index oscil-
lates between positive and negative values. A given year is 
defined as positive IOD or negative IOD year when DMI 
index is higher (lower) than a positive (negative) threshold 
for at least three consecutive overlapping seasons including 
OND, defined as the average of three consecutive months 
of that year. Note that for IOD we used 3 consecutive 

seasons including OND, since an IOD usually starts in 
May or June, peaks between August and November and 
then rapidly decays. For observation, a threshold ±0.5 °C 
is used to identify positive IOD and negative IOD years, 
while for CGCMs (similar to the ENSO) the thresholds are 
based the their respective Sd of DMI. Number of ENSO 
and IOD years for an observation dataset (NOAA_OI_
SST_V2) and each CGCM and the corresponding standard 
deviation (SD) of ONI and DMI indices are presented in 
Table 2.

The rainfall anomalies over the region associated with 
ENSO and IOD from composite analysis are similar to 

Fig. 7  Taylor diagram quantifying the correspondence between the simulated and observed area-averaged annual cycle of rainfall in each homo-
geneous rainfall sub-regions. Circles are for GCMs, triangles are for RCA and diamonds for CCLM model
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those obtained using regression analysis (Fig. 5), so our 
subsequent analyses will concentrate only on circulation 
anomalies associated with ENSO and IOD. Moreover, the 
climatological pattern of SLP and 850 hPa wind over east-
ern Africa for JJAS and OND are discussed in part I of our 
paper (see Endris et al. 2013). Figure 8a shows the El Niño 
anomalies of SLP and 850 hPa wind vectors for RCMs and 
their driving CGCMs in comparison with ERA-Interim 
reanalysis. ERA-Interim (our reference data in this case) 
shows strong positive SLP anomalies over the Arabian Pen-
insula. The positive SLP anomalies over Arabian Peninsula 
reflect the weakening of the monsoon through during El 
Niño. As Diro et al. (2011b) described, the weakening of 
monsoon trough over Arabian Peninsula might reduce the 
east–west pressure gradient, and consequently reduce the 
westerly winds from Atlantic/Congo, and leads to reduc-
tion of rainfall over the northern part of the region during 
JJAS. It also become evident that there is a reduction of the 
Somali Low Level Jets (SLLJ) diverging out of the Mas-
carene high, and the strength of westerly winds from the 
South Atlantic high, which are the main sources of mois-
ture over the northern part of the domain during JJAS. The 
reduction of these winds is manifested by the presence of 
north-easterly wind anomaly vectors off the coast of East 
Africa, and easterly wind anomaly vectors over western 
part of Eastern Africa. In contrast, during La Niña (figure 
not shown) most part of the study region is dominated by 
negative SLP anomalies particularly with deepening of 
the trough over the Arabian Peninsula. The deeper mon-
soon trough over the Arabian area is strongly associated 
with greater rainfall over the eastern Africa during JJAS. In 
addition, there are anomalies of strong westerly wind vec-
tors as result of SLP intensification over the Atlantic basin, 
and south-easterly wind vectors as a result of SLP inten-
sification over the Indian Ocean, which produce abundant 
rainfall over the region. These finds are consistent with 
findings of other studies such as Segele and Lamb (2005), 
Segele et al. (2009a, b), Diro et al. (2011b).

Some models represent the intensity as well as the spa-
tial pattern of circulation anomalies associated with El 

Niño and La Niña; particularly the ERA-Interim driven 
RCMs, Ensemble mean, HadGEM2-ES and its corre-
sponding downscaled results. Consistent with the rainfall 
results shown in Fig. 5, the two RCMs driven by CNRM-
CM5 show opposite anomaly circulation patterns in com-
parison with the reanalysis. These models show negative 
SLP anomalies over east coast of Africa and zero SLP 
anomalies over the Arabian Peninsula (Fig. 8a). They also 
show an easterly and south-easterly wind vector anoma-
lies, opposite to the reanalysis. Even though these patterns 
were not observed in the forcing CGCM (CNRM-CM5), 
analysis of the CNRM-CM5 model patterns over the large 
domain (15°W–120°E and 35°S–35°N) showed strong neg-
ative (positive) SLP anomalies during El Niño (La Niña) 
over the northern part of Africa (over Algeria, Tunisia and 
Libya), which has not been observed in the reanalysis. We 
expect that this wrong signal in the driving CGCM might 
be transferred to the RCMs, which leads the RCMs to 
generate a wrong anomalous circulation patterns over the 
domain. MPI-ESM-LR and its corresponding downscaled 
results show more intense SLP and wind field anomalies 
than ERA-Interim over the Arabian area extended down to 
western part of the Indian Ocean, while EC-EARTH model 
shows strong positive anomalies of SLP over western part 
of the Indian Ocean rather than over the Arabian Peninsula. 
The anomalous troughs over south Sudan represented by 
NorESM1-M, RCA (MIROC5) and RCA (NorESM1-M) 
are not seen in the reanalysis.

During OND, interannual rainfall variability over Eastern 
Africa is linked to both ENSO and IOD (Fig. 5b, c; Clark 
et al. 2003; Hasternrath 2007; Bahaga et al. 2015 and oth-
ers). In general, the southern and equatorial part of Eastern 
Africa receives above normal rainfall during El Niño and 
positive IOD, and below normal during La Niña and nega-
tive IOD. To highlight the underlining mechanisms link-
ing the ENSO and IOD with Eastern African rainfall, and 
also to evaluate the ability of the models to reproduce the 
anomalous circulation patterns, the composite SLP and 850 
wind fields are analyzed. The regional patterns for La Niña 
(negative IOD) are generally opposite-signed anomalies to 

Table 2  Number of ENSO 
(El Niño and La Niña) and 
IOD (Positive IOD and 
Negative IOD) years, and 
the corresponding standard 
deviations (Sd) in the 1982–
2005 period

Obs and CGCMs ONI Sd El Niño La Niña DMI Sd +ve IOD −ve IOD

NOAA_OI_SST_V2 1.07 8 6 0.62 4 7

CNRM-CM5 0.98 9 7 0.62 8 8

EC-EARTH 0.72 6 7 0.45 5 9

HadGEM2-ES 0.87 8 6 0.58 8 6

MPI-ESM-LR 1.27 5 6 0.65 3 5

CanESM2 1.13 6 8 0.49 7 8

GFDL-ESM2M 1.66 5 8 0.76 5 7

MIROC5 1.42 7 7 0.63 4 8

NorESM1-M 0.88 7 9 0.57 6 7
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El Niño (positive IOD), thus our analysis will concentrate 
only on anomalous circulation patterns associated with El 
Niño and positive IOD events. Figure 8b shows the SLP and 
850 hPa wind vector anomalies associated with El Niño. 
Positive surface pressure anomalies are observed over the 
western part of Eastern Africa, and negative surface pres-
sure anomalies are observed over the south-western part 

of the Indian Ocean. Moreover, westerly wind anomalies 
observed over the western part of the domain, and east-
erly anomalies over the western equatorial Indian Ocean. 
Kijazi and Reason (2005) link the wet conditions during El 
Niño events to easterly anomalies over the western equa-
torial Indian Ocean, while other studies (e.g. Latif et al. 
1999; Black et al. 2003) have proposed that the relationship 

Fig. 8  a JJAS El Nino anomalies of SLP (shaded in hPa) and 850 hPa winds (vectors in m/s). b OND El Nino anomalies of SLP (shaded in 
hPa) and 850 hPa winds (vectors in m/s). c OND positive IOD anomalies of SLP (shaded in hPa) and 850 hPa winds (vectors in m/s)
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between East African rainfall and ENSO as the result of an 
indirect forcing by ENSO on the Indian Ocean. Some of the 
models are able reproduce the observed anomaly circulation 
patterns. However, consistent with the rainfall anomalies in 
Fig. 5b, EC-EARTH, CanESM2, MIROC5 and their cor-
responding downscaled results fail to represent the nega-
tive SLP anomalies over the western tropical Indian Ocean. 
The models GFDL-ESM2M and NorESM1-M and their 

corresponding downscaled results show more intense east-
erly wind anomalies towards Eastern Africa. Overall, there 
is a clear effect of the CGCM-supplied boundary conditions 
in simulating the local anomalous circulation patterns, and 
the error from boundary conditions can be summarized as 
the “garbage in/garbage out problem”.

During positive IOD, there are positive SLP anomalies 
over the west of Eastern Africa and negative anomalies over 

Fig. 8  continued
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the western part of the Indian Ocean (see Fig. 8c). The nega-
tive SLP anomalies are associated with the warming of the 
western part of the Ocean during its positive phase. Consist-
ent with the surface pressure response, there are westerly 
850 hPa wind anomalies over west of Eastern Africa, and 
strong easterly anomalies (associated with the cold SST over 
eastern tropical Indian Ocean) off the east coast of Soma-
lia. These two anomalies converge along the equator and 

generate north-westerly wind anomalies moving towards the 
south-east Indian Ocean. Even though the positive (nega-
tive) IOD events are linked with above (below) normal rain-
fall over equatorial and southern part of eastern Africa dur-
ing OND, the mechanisms for this teleconnection (response 
of rainfall to anomalous circulation) are not quite clear yet. 
Ummenhofer et al. (2009) suggested that a reduction in sea 
level pressure over the western half of the Indian Ocean and 

Fig. 8  continued
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converging wind anomalies over Eastern Africa lead to mois-
ture convergence and increase convective activity over the 
region during its positive phase. However, Begeha (2014) 
emphasizes the role of the westerly flows from Congo air 
mass and the Atlantic region as the main moisture sources 
for the increase on rainfall over the region. We focus on the 
ability of the models in reproducing the observed anomalous 
circulation features. It appears that most models capture the 
observed broad-scale anomalous circulation characteristics 
associated with a positive IOD using ERA-Interim as refer-
ence, though some models exhibit some variations from the 
patterns observed. Particularly, CanESM2, MIROC5 and 
NorESM2-M again misrepresent the negative SLP anoma-
lies associated with warm SST over western tropical Indian 
Ocean. We argue that this significant short-coming from 
these CGCMs suggests strongly that these three models are 
unable to represent the potential implications of circulation 
pattern change in Eastern Africa.

4  Summary and conclusions

Climate variability is an important aspect of regional cli-
mate so assessing the ability of climate models to simulate 
the natural climate variability of a region is an essential 
task of evaluating these models. An important component/
driver of climate variability over many regions of the world 
is the SST-rainfall teleconnection. This study examines the 
ability of two CORDEX RCMs and their driving CGCMs 
to capture SST-rainfall teleconnection patterns over East-
ern Africa. The regional models used in the study are RCA 
driven by eight CGCMs and CCLM driven by four of com-
mon CGCMs. The reanalysis-driven simulations from the 
two RCMs are also analyzed to estimate error produced by 
the RCMs and those transmitted from driving CGCMs. We 
conduct the assessment over three homogeneous rainfall 
sub-regions, which cover most of Eastern Africa, namely: 
NEA, EEA and SEA. The analysis period is from 1982 to 
2005, which is the period that observed data are available.

Spearman’s rank correlation, linear regression and 
composite analysis were used to examine the teleconnec-
tions patterns. The Spearman’s rank correlation is used 
to identify oceanic regions that have a robust relationship 
with regional rainfall, and also to assess the models’ abil-
ity to simulate the spatial pattern of the teleconnection pat-
terns. Linear regression is applied to evaluate the ability 
of models to simulate both the patterns and the amplitude 
of rainfall teleconnections over the region against differ-
ent SST indices in Oceanic regions that have strong cor-
relations with Eastern African rainfall. Composite analysis 
was employed to assess the models’ ability to represent the 
anomalous circulation patterns associated with the domi-
nant modes affecting the rainfall over the region.

The results show that some models reproduce the 
observed teleconnective SST-rainfall patterns (spatial pat-
terns and amplitudes) better than others. The downscaled 
RCM-reanalysis runs are in better agreement with obser-
vation than RCM–CGCM runs in most of the examined 
sub-regions and seasons. Generally, RCMs driven by MPI-
ESM-LR, HadGEM2-ES and GFDL-ESM2M performed 
better than RCMs driven by other CGCMs. CanESM2 
and MIROC5, and their corresponding downscaled results 
capture the teleconnections in most of the sub-regions and 
seasons poorly. CGCMs generally underestimate the ampli-
tude of teleconnection patterns while RCMs tend to over-
estimate it. The overestimation of amplitude by the RCMs 
is likely because of enhanced precipitation due to a better-
resolved topography. It is also demonstrated that both the 
CGCMs and corresponding downscaled results exhibit a 
similar teleconnection pattern over regions where the rain-
fall is primarily controlled by large-scale features, with 
the RCMs maintaining the overall regional patterns from 
the forcing models. Differences in RCM simulations from 
corresponding driving simulations are noted mainly over 
northern part of the domain which is most likely related to 
mesoscale processes that are not resolved by CGCMs.

The models’ performance in reproducing the large-scale 
anomalies in SLP and low-level winds are consistent with 
their performance at representing the rainfall anomalies. 
The ERA-Interim driven simulations produce a more real-
istic representation in the magnitude of these fields. Con-
sistent with the rainfall anomalies, CanESM2 and MIROC5 
and their corresponding downscaled results fail to represent 
anomalous circulation patterns associated with ENSO and 
IOD in most of the examined regions and seasons. So we 
suggest that it’s not only the parameterizations in the RCMs 
that are the cause of the errors in the downscaled rainfall 
fields, the driving circulation states were not captured, as 
CGCM-derived boundary conditions were incorrect. We 
would also like to note that the simulation domain is much 
bigger than the study region giving the RCMs gives a lot of 
freedom to develop its own climate. Despite this the RCMs 
cannot improve on the CGCM results over the region if the 
CGCM boundary conditions are poor.

In conclusion, the results of this study demonstrate that 
differences in reproducing SST-rainfall teleconnection 
patterns arise mainly from the driving CGCMs. In other 
words, the relative contribution of teleconnection errors 
from boundary forcing is bigger than the choice of RCM or 
RCM configuration, implying that the choice of the forcing 
CGCM is more important than the choice of the RCM for 
the regional application. We suggest that more work should 
be targeted towards improving the boundary forcing given 
to the RCMs. We further suggest that the analysis pre-
sented here is helpful in selecting the appropriate models 
for regional applications over the Eastern Africa region. In 
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future work, we aim to investigate whether the current tel-
econnection patterns between the large scale climate modes 
(ENSO and IOD) and rainfall over Eastern Africa will per-
sist in the future under anthropogenic climate change.
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