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ABSTRACT: The skill of precipitation forecasts from global prediction systems has a strong regional and seasonal de-

pendence. Quantifying the skill of models for different regions and time scales is important, not only to improve forecast

skill, but to enhance the effective uptake of forecast information. The Subseasonal to Seasonal Prediction project (S2S)

database contains near-real-time forecasts and reforecasts from 11 operational centers and provides a great opportunity to

evaluate and compare the skill of operational S2S systems. This study evaluates the skill of these state-of-the-art global

prediction systems in predictingmonthly precipitation over theGreater Horn ofAfrica. This comprehensive evaluation was

performed using deterministic and probabilistic forecast verification metrics. Results from the analysis showed that the

prediction skill varies with months and region. Generally, the models show high prediction skill during the start of the

rainfall season in March and lower prediction skill during the peak of the rainfall in April. ECCC, ECMWF, KMA,

NCEP, and UKMO show better prediction skill over the region for most of the months compared with the rest of the

models. Conversely, BoM, CMA, HMCR, and ISAC show poor prediction skill over the region. Overall, the ECMWF

model performs best over the region among the 11 models analyzed. Importantly, this study serves as a baseline skill

assessment with the findings helping to inform how a subset of models could be selected to construct an objectively

consolidated multimodel ensemble of S2S forecast products for the Greater Horn of Africa region, as recommended by

the World Meteorological Organization.
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1. Introduction

Subseasonal predictions, from two weeks to a season, are

relevant for informing decision making and early warning

across a range of sectors in the Greater Horn of Africa (e.g.,

agriculture, energy, water, and disaster risk management).

Subseasonal forecasts bridge the gap between medium-

range weather and seasonal forecasts (Vitart et al. 2012;

Robertson et al. 2015; Vitart et al. 2017; White et al. 2017),

and have the potential to contribute to early warning and

early action for both flooding and drought disasters (Moron

et al. 2018).

Given the potential applications of subseasonal predictions

(White et al. 2017), and the increasing demand for forecast

information across sectors in recent years, the World Weather

Research Programme (WWRP) and World Climate Research

Programme (WCRP) launched a joint research initiative called

the Subseasonal to Seasonal Prediction project (S2S) and a

multimodel database of S2S forecasts and reforecasts. The

database provides an opportunity to make comparisons be-

tween the outputs of different prediction models and advance

knowledge of S2S prediction (Vitart et al. 2017). Since the

establishment of the S2S database, some studies have evalu-

ated the skill of S2S models in different regions. Li and

Robertson (2015) assessed the weekly prediction skill of three

global prediction systems over the globe and indicated the

models had very good skill for the first week. Over Africa,

de Andrade et al. (2021) evaluated the subseasonal fore-

casts for three global prediction systems and found that

although skill was relatively low in weeks 3 and 4, com-

pared to weeks 1 and 2, the probabilistic forecasts still had

skill in weeks 3–4. de Andrade et al. (2019) compared the

performance of subseasonal precipitation reforecasts from

11 S2S models considering lead times up to 4 weeks using

deterministic verification metrics and indicated higher skill

during the first week and reduced skill as lead time increased.

Vigaud et al. (2017) also examined the subseasonal rainfall

forecast skill over summer monsoon regions of the Northern

Hemisphere using submonthly lead times and found good

skill (reliability) in multimodel forecasts for forecasts be-

yond 1 week.

Because of different drivers of S2S variability, and the

nonlinear response to these drivers, the skill at predicting the
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precipitation varies widely from region to region and time

scale to time scale. Evaluating the forecast skill for different

regions and time scales is vitally important to identify model

errors, improve forecast skill and also promote the uptake

and use of forecast information in decision making. In this

study, we thoroughly assessed the skill of 11 S2S models

over the Greater Horn of Africa (GHA) during the March–

April–May (MAM) rainfall season with a focus on monthly

time scales.

Past studies have shown that the MAM rainfall commonly

known as the long-rains over the GHA is weakly associated

with large-scale oceanic and atmospheric features (e.g.,

Hastenrath et al. 1993; Rowell et al. 1994; Vellinga and Milton

2018) and has low predictability compared to the October–

November–December (OND) rainfall known as the short-

rains (Camberlin and Philippon 2002). Furthermore, it has

been noted that there is an intraseasonal inhomogeneity within

the long-rains season. The spatial rainfall anomaly patterns

are similar in March and April but quite different in May

(Camberlin and Philippon 2002). Other studies (e.g., Rowell

et al. 1995; Nicholson and Kim 1997) also found that time

series of interannual variability for the months of March,

April, and May are different. Nicholson (2015) also indicated

that the prevailing atmospheric circulation and controls on

interannual variability are clearly different during the three

months of the long-rains. As a result of this inhomogeneity

within the season, some authors (e.g., Camberlin et al. 2009;

Moron et al. 2013; Rowell et al. 1994) have suggested that

subseasonal analysis is required for the long-rains season to

advance the understanding and prediction of precipitation

variability.

It is also important to recall that the World Meteorological

Organization (WMO) Executive Council at its 69th Session in

May 2017 recommended the operational Regional Climate

Centres (RCCs) and National Meteorological and Hydrological

Services (NMHSs) to access digital forecast and reforecast

data from the WMO lead centers for long-range forecasts

and produce an objectively consolidated subseasonal and

seasonal forecast product that is traceable and reproducible.

In the recommendations, the need to assess the skill of

forecasting models for different regions was stressed as well

as the selection of a subset of models which have better skill

for the region of interest for the construction of the relevant

multimodel ensemble. Therefore, the results from this

study address these recommendations and provide a crucial

baseline for identifying skillful models over GHA on the

S2S time scale.

2. Data and methods

a. Data

1) OBSERVED DATA USED FOR VERIFICATION

The observed data used to verify rainfall reforecasts is the

Climate Hazards Group InfraRed Precipitation with Station

data (CHIRPS) version v2.0 (Funk et al. 2015). This dataset

is a blended product of 0.058 resolution satellite imagery and

in situ station data provided by the Climate Hazards Group.

CHIRPS dataset is available from 1981 to the near-present.

Validations of CHIRPS rainfall data has been conducted

over the different parts of East Africa by comparing CHIRPS

with rain gauge data and other satellite rainfall products

such as African Rainfall Climatology version 2 (ARC2) and

the Tropical Applications of Meteorology using Satellite

and Ground-Based Observations (TAMSAT) (e.g., Maidment

et al. 2017; Dinku et al. 2018). It has been found that CHIRPS

performed significantly better than ARC2 and TAMSAT with

higher skill, low bias and lower random errors particularly

at decadal (10-days) and monthly time scales (Dinku et al.

2018) and indicated its suitability for use as a reference rainfall

dataset.

The European Centre for Medium-Range Weather Forecasts

(ECMWF) fifth generation reanalysis (ERA5, Hersbach et al.

2020) datasets was used to evaluate the mean circulation fea-

tures. This global dataset is available from 1979 to the near

present with a 0.258 resolution. In this study, monthly 850-hPa

zonal andmeridional winds are utilized for the analysis period. The

observed sea surface temperature (SST) data utilized in this study is

version2of theNationalOceanic andAtmosphericAdministration

(NOAA) Optimum Interpolation SST (NOAA_ OI_SST_V2)

analysis, retrieved from (https://climatedataguide.ucar.edu/

climate-data/sst-data-noaa-optimal-interpolation-oi-sst-analysis-

version-2-oisstv2-1x1). The NOAA_OI_SST_V2 integrates both

in situ and satellite data and is available from 1982 to the present

at 1.08 spatial resolution.

2) MODEL DATA

The S2S database consists of reforecasts and near-real-time

forecasts (3 weeks behind) from 11 global prediction centers,

which have beenmade available for scientific research via the data

archive portal at the ECMWF and the China Meteorological

Administration (CMA) (Vitart et al. 2017). The 11 global pre-

diction centers are Australian Bureau of Meteorology

(BoM), ChinaMeteorological Administration (CMA), Météo-
France/Centre National de Recherche Meteorologiques

(CNRM), Environment and Climate Change Canada (ECCC),

ECMWF, Hydrometeorological Centre of Russia (HMCR),

the Institute of Atmospheric Sciences and Climate (ISAC),

Japan Meteorological Agency (JMA), Korea Meteorological

Administration (KMA), National Centers for Environmental

Prediction (NCEP) and the Met Office (UKMO). Not all 11

models are exactly independent from each other. The UKMO

and KMA use the same system and have the same configu-

ration, but different atmospheric initial conditions and

ensemble size.

The reforecasts and forecasts are archived on a common 1.58
grid horizontal resolution in the S2S database. The reforecasts,

also known as hindcasts, are a set of forecasts with start and

prediction dates in the past, and are used to assess the skill of

the model in reproducing the past forecasts and to calibrate

real-time forecasts. Reforecasts are similar in every aspect with

the real-time forecasts apart from differences in ensemble size.

This study assesses the skill of 11 global prediction systems in

predicting the monthly rainfall over GHA.

As the S2S models are developed and run by different

prediction centers, they have different configurations. For
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instance, some models have fixed reforecast configuration,

whereas others have on-the-fly configuration. Fixed reforecasts

are produced once during the lifetime of a given version of the

model (e.g., BoM, CMA, Meteo-France, and NCEP). On the

other hand, on-the-fly reforecasts are produced at the same

time as the real-time forecasts (e.g., ECMWF, KMA, and

UKMO). The frequency and initial start date of the refor-

ecast also varies from model to model. Some models are run

in continuous mode on a daily basis (e.g., CMA, NCEP),

whereas others run on weekly or subweekly basis (e.g.,

BoM, ECMWF). In addition to that, the reforecast length

and time range varies from model to model. For example,

the NCEP has 12 years reforecasts initialized every day from

1999 to 2010, whereas ECMWF produces reforecasts on-

the-fly covering the past 20 years, initialized 2 days per week

(Monday and Thursday) for each model version. The refor-

ecast ensemble size also varies from model to model. Some

models are atmosphere-only models forced by observed SSTs,

while others have the atmospheric component coupled to an

ocean model and a sea ice model. The general features of the

global prediction systems used for this study are summarized in

Table 1.

Even if the S2S prediction systems have different con-

figuration or setup, there are some common features

between them to make the model intercomparisons pos-

sible (de Andrade et al. 2019). For instance, all of the

prediction systems have reforecasts covering the period

1999–2010. Each model also has a control reforecast

member using a single unperturbed initial condition and

perturbed forecast members produced for sampling un-

certainty in the initial conditions. Further, most of the

prediction systems produce forecasts and reforecasts starting

on the 1st and middle of each month. Therefore, it is possible

to make the model comparisons using the common period

1999–2010.

In this analysis, all reforecasts (control and perturbed) from

one week lead to zero lead have been used. For example, to

assess the skill of the models during April, all reforecasts ini-

tialized from 23 to 31March have been analyzed. The rationale

for choosing this is: 1) to include the models that have shorter

forecast range in the model comparison analysis; and 2) to get

a sufficiently large number of ensemble members for the

probabilistic verification as somemodels, especially themodels

run on a daily basis, have few ensemble members if we only

consider one or two initialization dates. To enable the com-

parison between all models, the analysis is performed over a

common period from 1999 to 2010 (for 12 years). For compu-

tational purposes, both CHIRPS and model reforecasts have

been regridded to 0.58 using bilinear interpolation prior to the

skill analysis. We have chosen the 0.58 as this is the spatial

resolution currently used operationally at IGAD Climate

Prediction and Applications Centre (ICPAC) the RCC over

the GHA, when producing the monthly and seasonal down-

scaled climate outlooks for the region.

b. Verification methods

It is important to note that forecast quality is multifaceted

and there is no single verification metric that captures all

aspects of forecast quality (Murphy 1993). It is therefore im-

portant to assess the forecast skills using a range of different

statistical measures. Currently, there are several methods

available to evaluate the skill of weather and climate forecasts–

ranging from simple traditional statistics and scores tomethods

for more detailed and advanced verifications. In the present

analysis, the skills of themodels have been assessed using three

deterministic and three probabilistic forecast verification

measures. The deterministic forecast measures include

mean error, linear correlation and root-mean-square error.

The probabilistic forecast evaluation metrics include the

ranked probability skill score, relative operating charac-

teristic, and spread–error ratio. The deterministic forecast

verification assessment is performed between the ensemble

mean of all reforecast members (control plus perturbed

members) and the verifying observation, whereas the

probabilistic forecast verification analysis is performed us-

ing all the individual ensemble members. In addition to the

above verification metrics, Taylor and reliability (attribute)

diagrams, which provide summary statistical information be-

tween the model and reference field are used.

1) DETERMINISTIC VERIFICATION METRICS

In this section we summarize the deterministic verifications

methods utilized. The mathematical equations for the determin-

istic metrics are presented in the online supplemental material.

TABLE 1. Summary of configuration of the global prediction systems (models) used in this analysis. The reforecast length, time range,

frequency, and number of ensemble members depend on the modeling center.

Model Reforecast configuration Time range (days) Reforecast length Reforecast frequency Reforecast size Ocean coupling

BoM Fixed 0–62 1981–2013 6 per month 33 Yes

CMA Fixed 0–60 1994–2014 Daily 4 Yes

CNRM Fixed 0–61 1993–2014 4 monthly 15 Yes

ECCC On-the-fly 0–32 1998–2017 Weekly 4 No

ECMWF On-the-fly 0–46 Past 20 years 2 per week 11 Yes

HMCR On-the-fly 0–61 1985–2010 Weekly 10 No

ISAC Fixed 0–32 1981–2010 Every 5 days 5 No

JMA Fixed 0–33 1981–2010 3 per month 5 No

KMA On-the-fly 0–60 1991–2010 4 per month 3 Yes

NCEP Fixed 0–44 1999–2010 Daily 4 Yes

UKMO On-the-fly 0–60 1993–2015 4 per month 7 Yes
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(i) Mean error

The mean error represents the average difference between

forecast and verification values. The mean error is primarily a

measure of the systematic part of the forecast error. It is im-

portant to note that the mean error does not measure the

magnitude of the errors. It also does not measure the corre-

spondence between forecast and observation as it is possible to

get a perfect score for a bad forecast if there are compensating

errors (Kendzierski et al. 2018).

(ii) Root-mean-square error

The root-mean-square error (RMSE) represents the square

root of the average of the squared differences between

forecasts and verification data. It is a measure of the ran-

dom component of the forecast error and often used for

representing the accuracy of forecasts. The RMSE is sen-

sitive to large errors and provides information on the av-

erage magnitude of the forecast errors. However, the

RMSE does not indicate the direction of the deviations.

The RMSE puts greater influence on large errors than

smaller errors (Jorgensen 2016) and thus it might be a good

indicator of large errors.

(iii) Linear correlation

Correlation is one of the most widely used measures for

forecast verification, and provides an assessment of the

strength of the linear association between forecasts and the

verifying observation. It is a good measure of linear asso-

ciation or phase error. Jolliffe and Stephenson (2012) noted

that it is possible for a forecast with large errors to still

have a good correlation coefficient with the observation.

(iv) Taylor diagram

A Taylor diagram (Taylor 2001) summarizes the statisti-

cal relationship between model and the observed/reference

field. The diagram is useful for evaluating the accuracy of

multiple model outputs against a reference data. Further

information on the Taylor diagram is provided in the sup-

plemental material.

2) PROBABILISTIC VERIFICATION METRICS

(i) Ranked probability skill score

The ranked probability score (RPS) is a measure of the

prediction skill of probabilistic forecasts issued for cate-

gorical events (i.e., tercile-based categorical forecasts). The

RPS is defined as the sum of the squared differences between

cumulative forecast probabilities and cumulative observed

probabilities (Murphy 1993). The RPS measures both the re-

liability and resolution of a forecast and is closely related to the

Brier score (Tippett 2008). The RPS is the same as the Brier

score in the case of two category forecasts. The discrete ex-

pression of the RPS is given as follows:

RPS
t
5�

N

n51
(Ft

n 2Ot
n)

2
, (1)

where Ft
n is the forecast probability at time t, given by

P(forecastn , threshn); O
t
n is the observed probability at

time t, given by P(observedn , threshn); and n is the prob-

ability category.

The ranked probability skill score (RPSS) is a skill score

based on the RPS values. It is computed as the percentage

improvement over reference score:

RPSS5

 
12

RPS

RPS
ref

!
3 1005

�
12

RPS

RPS
clim

�
3 100: (2)

The RPSS compares the RPS of a forecast to some reference

forecast, such as a climatology, and the score ranges be-

tween negative infinity and 1. An RPSS below 0 indicates

that the forecast is less skillful than climatology, and above

zero indicates the forecast is more skillful than climatology

where 1 is a ‘‘perfect’’ forecast. Scores equal to zero are

equivalent to forecasts given by the climatology. Müller
et al. (2005) and Tippett (2008) noted the dependence of the

RPSS on ensemble size. It has been indicated that RPSS is

negatively biased for ensemble prediction systems with

small ensemble sizes. In this analysis, an ensemble size

corrected RPSS called ‘‘fair RPSS’’ (Ferro 2014) is used for

evaluating and comparing the skill of operational S2S sys-

tems. Further information about fair RPSS score can be

found in Ferro (2014).

(ii) Relative operating characteristic (ROC)

ROC measures the ability of a forecast to discriminate be-

tween events and nonevents, and measures the degree of

forecast discrimination (Mason 1982). Discrimination is the

ability to distinguish one categorical outcome from another.

The ROC is not sensitive to bias in the forecast, so it does not

say anything about reliability. A biased forecast, however, may

still have good resolution and produce a good ROC curve,

which means that it may be possible to improve the forecast

through calibration (Jolliffe and Stephenson 2012). The ROC

score, which is computed as the area under the ROC curve,

is considered as a useful summary measure of forecast skill.

A ROC score of 0.5 indicates unskillful forecasts (i.e., the

system is no better than climatology). A ROC score above 0.5

indicates positive discrimination skill and a score of 1.0 rep-

resents a perfect forecast. More information on the ROC can

be found in Mason (1982), and Jolliffe and Stephenson

(2003, 2012).

(iii) Reliability (or attribute) diagram

The reliability (also known as attribute) diagram is a

graphical method used to evaluate the reliability of probabi-

listic forecast systems. The diagram presents the observed

frequency against the forecast probability. It basically an-

swers the question of how well the predicted probabilities

of an event correspond to their observed frequencies. A

forecast system is reliable if and only if all the forecast

probabilities are reliable (Toth et al. 2003). A reliability di-

agram displays a range of forecast probabilities for a given

event and their corresponding observed frequencies col-

lected over the reforecast period (Weisheimer and Palmer

2014). Generally, the reliability is high when correspondence
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between the forecast probabilities and the observed frequen-

cies is good, and it is low when this correspondence is poor. It is

expected that all data points will lie on a straight diagonal line in

the reliability diagram when the correspondence between the

forecast probabilities and the observational frequencies are

perfect. A reliability diagram is a form of attribute diagram

when the no-resolution (distance from the horizontal or cli-

matological line) and no-skill with respect to the climatology

lines are included in the diagram. In the attribute diagram if the

curve lies below the line, it indicates overestimation (i.e., the

forecast probabilities are too high). On the other hand, if the

curve lies above the line, it indicates underestimation (i.e.,

forecast probabilities are too low).

(iv) Spread–error ratio

The spread–error ratio (SPR) is used to assess the rela-

tionship between ensemble spread and the deterministic

forecast error. It is defined as the square root of the ratio of

mean ensemble variance to the mean squared error of the

ensemble mean with the verifying observation. The vari-

ance is a measure of the forecast member spread of a par-

ticular forecast indicating whether the forecast ensemble

spread is large or small, while the RMSE is a measure of the

forecast error of the ensemble mean forecast. Thus, the

SPR evaluates the ability of the ensemble spread (variance)

to depict the forecast error of the data expressed as the

RMSE of the ensemble means. When the RMSE and spread

are equal, the ensemble successfully predicts the forecast

error. When the RMSE is superior to the spread meaning

that the SPR is less than 1, it is considered as under-

dispersive (overconfidence). Conversely, SPR greater than

1 indicates overdispersive (underconfidence). For a reliable

forecast system, the ensemble forecasts are expected to

have the same size of ensemble spread as their RMSE

(Leutbecher and Palmer 2008; Leutbecher 2009). The SPR

is suitable for verification of ensemble forecasts and sensi-

tive to both forecast resolution and reliability (Christensen

et al. 2015).

FIG. 1. Spatial distribution rainfall climatology duringMarch, April, andMay over GHA using CHIRPS observed data.
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FIG. 2. Spatial distribution of mean error of rainfall between models and CHIRPS during

(a) March and (b) April over GHA for the period from 1999 to 2010.
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3. Results and discussion

a. Rainfall climatology

We first analyzed the spatial distribution of rainfall clima-

tology for individual months using CHIRPS data. Figure 1

shows the observed rainfall climatology during March, April,

and May averaged for the period 1981–2010. Climatologically,

during the month of March the maximum rainfall is located

over southern parts of the region mainly in most parts of

Tanzania, Burundi, and Rwanda. During April and May,

the rainfall band moves from the southern to the northern

part of GHA following the position of the intertropical

convergence zone (ITCZ). In April, a marked increase

in rainfall occurs throughout the region. In May, the max-

imum rainfall is located over western part of Ethiopia,

most parts of South Sudan and Uganda. The following

sections presents the monthly rainfall skill of S2S models

over GHA for the individual months using the verification

metrics described above.

b. Deterministic verification scores

1) MEAN ERROR

Figures 2a–c show the spatial distribution of mean errors

of rainfall between the S2S models and CHIRPS over GHA

for March, April, and May, respectively. During March,

CMA, HMCR, ISAC, and JMA overestimated, while BoM

underestimated the monthly rainfall over most parts of

the region. In particular, the overestimation of total monthly

precipitation forHMCRand ISAC systems is quite notable. The

rest of the models show a mixed signal with variations existing

in terms of the location and magnitude of the mean error.

Generally, BoM, CMA, CNRM, HMCR, and ISAC show large

errors, while ECCC, ECMWF, JMA, KMA, NCEP, and

UKMO show smaller mean errors over the region during

the month of March.

In April, most of the models show larger errors (Fig. 2b)

compared to March (Fig. 2a). Consistent with the results for

March, the magnitudes of errors are smaller for ECCC,

ECMWF, JMA, KMA, NCEP, and UKMO models. In con-

trast, CMA, CNRM, HMCR, and ISAC largely overestimate

the rainfall especially the overestimation in HMCR and ISAC

models over the northern part of the region is notable.

During May, the majority of the models overestimate the

rainfall mainly over the northern part of the region (Fig. 2c). In

contrast, the BoM underestimates the rainfall in most parts of

the region. Moreover, some of the models including CMA, JMA,

KMA,NCEP, andUKMOshow a dry bias over the southern part

of the region. It is noted that KMA and UKMO models show

similar bias patterns in the region. BoM, CMA, CNRM, HMCR,

and ISAC still show large errors over the region.

In general, the results from the mean error analysis show

that the magnitude of mean errors are low during the month of

March compared to April and May for all the prediction

models. CMA, CNRM, HMCR, and ISAC overestimate the

monthly rainfall over most part of the region, whereas BoM

systematically underestimate the rainfall throughout most of

the region. Overall, ECCC, ECMWF, JMA, KMA,NCEP, and

FIG. 2c. As in (a), but for May.
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FIG. 3. Spatial distribution of RMSEof rainfall between 11 S2Smodels and CHIRPS during (a)

March and (b) April.
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UKMO show low bias over the region during March, April,

and May. The spatial distribution of the mean error of rainfall

from KMA and UKMO are almost identical in most parts of

the region. This might be due to the fact that the two models

have exactly the same configurations. As mentioned earlier,

the only difference between the two models is the atmospheric

initial condition (Noh et al. 2016). The reason for themonth-to-

month skill difference will be discussed later.

2) ROOT-MEAN-SQUARE ERROR (RMSE)

The spatial distributions of RMSE from the S2Smodels with

reference to CHIRPS are presented from Figs. 3a–c. It can be

seen that RMSE are generally higher in April compared to

March and May. BoM, CMA, HMCR, and ISAC show large

errors over the region in all the months with HMCR and ISAC

performing worse (with mean RMSE more than 100mm),

which is consistent with the mean error results. On the other

hand, ECCC, ECMWF, KMA, NCEP, and UKMO exhibit

good prediction skills over the region in terms of RMSE. It can

also be seen that KMA and UKMO prediction systems exhibit

similar RMSE patterns over the region. Generally, the mag-

nitudes of the mean errors are small during March compared

with April and May.

3) LINEAR CORRELATION

Figures 4a–c illustrate the spatial distribution of correlation

coefficients of rainfall between models and CHIRPS for

March, April, and May, respectively, for the period from 1999

to 2010 over GHA. Cross hatches indicate regions where the

correlation is statistically significant at the 95% confidence

level computed using Student’s t test. It can be seen that the

skill of the model in producing the rainfall forecast varies from

month to month. During March, the majority of the models,

with the exception of the HMCRmodel, show high correlation

within the 95% confidence level over the equatorial and

southern sector of the region and mainly higher toward the

coast. Some of the models show low correlation over the

northern part of the GHA, mainly over Sudan, South Sudan

and northern and western parts of Ethiopia, but it is important

to note that March is not the rainfall season over the northern

part of the region (Fig. 1). Overall, ECMWF, JMA, KMA,

NCEP and UKMO show relatively high and significant cor-

relation over the equatorial sector compared to the rest of the

models. During April, the correlation skills are relatively

low over the region compared to March with some models

showing a negative correlation in parts of the region. Most

notably, CMA model shows negative correlation over the

eastern part of the region in April (Fig. 4b). Furthermore,

CNRM, HMCR, ISAC, JMA, and NCEP also exhibit negative

correlation over parts of the equatorial East Africa, mainly

over parts of Kenya and Somalia. BoM, ECMWF, JMA,KMA,

and UKMO show relatively improved skill compared to the

other models, mainly over the equatorial and southern part of

the region. This may be linked with increased predictability in

that region associated with the development of low-level

Somali jet and Asian summer monsoon system in May as

shown by Nicholson (2015). A discussion about the pre-

dictability of jet and monsoon will be discussed later in

FIG. 3c. As in (a), but for May.
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FIG. 4. Spatial distribution of correlation coefficient of rainfall betweenmodels and CHIRPS

during (a) March and (b) April, for the period from 1999 to 2010. Hatching indicates regions

where the correlation is statistically significant at the 95% confidence level.
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section 3d. During May (Fig. 4c) the models generally

show better skill than during the month of April. ECCC,

ECMWF, KMA, NCEP, and UKMOmodels show relatively

higher skill with significant correlation over the region

compared to the other models. It is found that HMCR

presents the negative correlations over most parts of the

region reflecting the fact that the model fails to reproduce

the interannual variability.

In addition to evaluating the S2S models at monthly time

scales, we also analyzed the skill of the models for weeks 11 2

and weeks 3 1 4 to investigate if the skill for the monthly

forecast is coming from weeks 1 1 2 only or there is skill in

weeks 3 1 4. In March (Fig. S1 in the online supplemental

material) for weeks 1 1 2 the correlation coefficients are sta-

tistically significant at 5% level for most models except HMRC

showing that the prediction skill is high. In weeks 3 1 4

(Fig. S2), the skill is lower in comparison to weeks 1 1 2.

However, ECMWF, KMA, NCEP, and UKMO still have

prediction skills with correlations greater than 0.5 over most of

the southern and equatorial region. In April (Fig. S3), the

weeks 1 1 2 prediction skill is high for most models except for

CMA, CNRM, and HMRC which in some areas have weak

negative correlations. The majority of the models during April

have lower skill in weeks 31 4 withmost models showing weak

negative and positive correlations (Fig. S4). Only ECCCmodel

shows statistically significant correlations in equatorial parts of

the region. Since these statistics are calculated over a 12 year

period, a larger sample would provide a greater confidence on

the skill for weeks 3 1 4 in April. In May (Figs. S5–S6), most

models show high prediction skill (significant correlations) in

weeks 1 1 2 except for the CMA, ECCC, and HMRC models.

The weeks 3 1 4 prediction skills in May are generally higher

compared to weeks 31 4 in April. During weeks 31 4 of May,

CMA, KMA, NCEP, and UKMO show higher prediction skill

in comparison with the other models. Thus, in general even

though the models have lower prediction skills in weeks 31 4,

the models do have skill in weeks 3 1 4. These results are

consistent with Vigaud et al. (2018) who found that during the

February to April season the ECMWF model had skill up to

weeks 31 4. Thus, issuing out the monthly forecasts is likely to

aid in tactical decision making over the various sectors in the

region that utilize forecast information from the S2S models.

Overall, the results from the correlation analysis show

that the correlation skills are highest during March and

poor during April. The high prediction skill during March

might be linked with high association of March rainfall with

tropical sea surface temperatures (SSTs) compared to

April and May as indicated by Camberlin et al. (2009) and

Moron et al. (2013). On the other hand, the low prediction

skill during April might be related with the wind and

pressure pattern changes over the Indian Ocean as there

is a directional shift in low level winds from northeast (in

March) to southwest (in May).

4) TAYLOR DIAGRAM

Figure 5 shows a Taylor diagram displaying normalized

statistical comparison (i.e., correlation, root-mean-square er-

ror and amplitude of variation) of monthly total rainfall of the

FIG. 4c. As in (a), but for May.
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S2S models with CHIRPS during March, April, and May, re-

spectively. The rainfall is spatially averaged for the GHA do-

main bymasking out the regions outside GHA. InMarch, most

models (including CMA, CNRM, ECCC, ECMW, JMA, KMA,

and UKMO) show high correlation (.0.6) in comparison with

the observation. In particular, ECMWF, KMA, and UKMO

present relatively high correlation (.0.8) and low root-mean-

square difference and have a variation close to the reference

data. On the other hand, BoM, HMCR, and NCEP show

low correlation (,0.6) with HMCR showing the lowest

correlation (i.e., 0.1) and a variation far from the reference

field. During April, correlations are relatively low in compar-

ison to March. Moreover, most of the models underestimate

the magnitude of year-to-year variation relative to CHIRPS,

while three models (CMA, JMA, and ISAC) overestimate the

variation. BoM, ECCC and ECMWF have relatively high

correlation (r . 0.6) compared with other models. ISAC

shows a variation much higher than CHIRPS, while CMA

exhibits the lowest correlation. During May CNRM, ECCC,

ISAC, KMA, NECP, and UKMO have relatively high

correlation (r . 0.6) compared with other S2S models, while

JMA and HMCR presents the lowest correlation. It is also

noticed that HMCR and JMA indicate extremely high varia-

tion compared to CHIRPS.

c. Probabilistic verification scores

1) RPSS

The fair RPSS from the 11 S2S models for March, April,

and May are presented in Figs. 6a–c, respectively. During

March most models show positive RPSS (i.e., a forecast

better than the climatological forecast values) over most

parts of the region, with maximum score over the equatorial

sector (Fig. 6a). Consistent with other verification metrics,

HMCR shows the lowest skill by presenting negative scores

over most parts of the region. In April, the skill for most S2S

models is relatively low compared to March. More grid

points with negative scores are found than for March.

ECCC, ECMWF, and KMA show relatively better skill in

the region. During May, the skills of the forecasts are

FIG. 5. Taylor diagram displaying normalized statistical comparison of monthly total rainfall of the S2Smodels with

CHIRPS during (top left) March, (top right) April, and (bottom left) May.
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FIG. 6. Ranked probability skill score (RPSS) from 11 S2S models for (a) March and (b) April

validated against CHIRPS for the period from 1999 to 2010.
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generally higher than April, but lower than March. While

ECCC, ECMWF, KMA, NCEP, and UKMO present the

highest skill, CMA, HMCR, and ISAC show the lowest skill

(Fig. 6c). Overall, the results of RPSS indicate that the skill

of the S2S model forecasts is lower in April than March and

May, agreeing with the previous results of mean error and

correlations. The RPSS values obtained in this study are

relatively higher than those in Vigaud et al. (2018) for sea-

sonal evaluation, highlighting the importance of the monthly

updates during the season. It is also noted that most models

predict worse than climatology over the northern parts of the

region, mainly over Sudan. But it is important to note that the

northern part of the GHA is generally dry during this sea-

son (Fig. 1).

2) ROC

Figures 7a–c show ROC skill scores (ROCSS) for lower-

tercile forecasts for March, April, and May, respectively.

During March, most of the models show a forecast skill

better than the climatological forecast (Fig. 7a). In par-

ticular, CMA, CNRM, ECCC, ECMWF, ISAC, KMA,

NCEP and UKMO show good skill over the region. On the

other hand, BoM, HMCR, and JMA present a forecast

worse than a climatological forecast over parts of the re-

gion especially over parts of Kenya, Somalia, Ethiopia,

South Sudan, Uganda, and Tanzania. In April, most of the

S2S models show lower skill than in March. ECMWF,

KMA, and UKMO perform better than other models, with

the ECMWF model showing high ROCSS over the region

and outperforming the rest of the models. The rest of the

models including BoM, CMA, CNRM, ECCC, HMCR,

ISAC, JMA, and NCEP exhibit skill scores of less than 0.5

over equatorial parts of the region indicating the forecast

from those systems is worse than the climatological fore-

cast over the specified region. During May, ECMWF,

KMA, NCEP, and UKMO prediction systems show good

prediction skill over the region compared to the other

prediction systems. In contrast, HMCR performs the worst.

In general, April forecasts exhibit lower skill than in both

March and May. The ROC skill scores for the upper-tercile

forecasts have also been analyzed and the results are very

similar to lower-tercile forecasts (figure not shown). ROC skill

scores for the lower-tercile in weeks 11 2 and weeks 31 4 for

each month was also computed (Figs. S7–S12). The results

reveal that nonetheless weeks 1 1 2 have higher skill than

weeks 31 4, the weeks 31 4 still have skill especially in March

andMay. de Andrade et al. (2021) also evaluated the quality of

subseasonal precipitation forecasts over Africa using refor-

ecasts from three models (ECMWF, UKMO, and NCEP) and

indicated that the probabilistic forecasts showed reasonable

skill in weeks 3 1 4.

3) RELIABILITY (OR ATTRIBUTE) DIAGRAMS

Figure 8 shows the attribute diagrams of precipitation for the

below-normal category over GHA from the 11 S2S models

during March, April, and May. During March, it can be seen

that the majority of the models lie within the gray area par-

ticularly for higher probabilities indicating good reliability in

the issued reforecast probabilities. Only three of the S2S

models, namely CMA, HMCR, and ISAC, lie below the no

FIG. 6c. As in (a), but for May.
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FIG. 7. Relative operating characteristic skill score (ROCSS) for lower tercile during (a)March

and (b) April for the period from 1999 to 2010.
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skill line for forecast probabilities above 0.4. During April,

most prediction systems including BOM, CMA, CNRM,

ECCC, HMCR, ISAC, and NCEP are away from the perfect

reliability diagonal (458) line particularly for higher forecasted
probabilities and indicate the lack of reliability and resolution

for the issued hindcast probabilities. The rest of the S2Smodels

show good reliability. In particular, the curve for ECMWF,

KMA, NCEP, and UKMO are much closer to the perfect re-

liability line, indicating a much better agreement between the

forecast probabilities and observed frequencies. In May,

the three S2Smodels (i.e., BoM,HMCR, and ISAC) showed the

lowest skill by indicating lower resolution and overconfidence.

It is also noted that the majority of the models underestimated

the low probabilities (below the climatological line). During

the three months, it has been found ECMWF shows better

prediction skill than the rest of the S2S models. The results for

above normal category (figure not shown) were found to be

consistent with the results of below-normal category.

4) SPR

The SPR from the 11 S2S models for March, April, andMay

are presented in Figs. 9a–c, respectively. In general, it can be

seen that most of the S2S models indicate underdispersion

(overconfidence) over wet areas and overdispersion (under-

confidence) over the dry areas in the northern parts of the

region mainly over Sudan. A recent study by de Andrade et al.

(2021) also noted overconfidence in ECMWF, NCEP and

UKMO models in all weeks and suggested the need to apply

calibration for more reliable predictions. In March (Fig. 9a),

most of the models show good performance particularly over

the equatorial and southern parts of the region. In the HMCR

model, the spread is much smaller than the error. During April

(Fig. 9b), most models have an SPR less than 1 indicating un-

derdispersion (overconfidence). ECCC and ECMWF outper-

form other models by presenting SPR values close to 1. In May

(Fig. 9c), similar toApril, the majority of themodels present an

error larger than the spread reflecting underdispersive char-

acteristics, with the exception of the northern parts of the re-

gion. ECMWF and ECCC perform better than the rest of the

prediction systems, while HMCR performs the worst in terms

of spread–error relationship. de Andrade et al. (2021) indi-

cated enhanced skill in ECMWF and associated the forecast

skill with correct representations of climate drivers’ tele-

connections such as El Niño–Southern Oscillation (ENSO),

Indian Ocean dipole (IOD) and Madden Julian oscilla-

tion (MJO).

d. SST and atmospheric features

Further to the evaluationof the skill of S2Smodels in predicting

themonthly rainfall, this study assessed the ability of themodels in

representing some of the important large-scale features. The goal

is to provide insight into the connection between the skill of

rainfall forecasts and the representation of key processes that

drive monthly rainfall variability in the region.

1) INDIAN OCEAN SST

The Indian Ocean plays an important role in modulating

the climate variability of the GHA. Previous studies (e.g.,

FIG. 7c. As in (a), but for May.
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Camberlin and Philippon 2002; Vellinga and Milton 2018;

Wainwright et al. 2019) have shown the influence of SST

anomalies over the tropical Indian Ocean on the East African

long-rains. In this study, we assessed the ability of S2S models

to reproduce the teleconnections between SSTs over the

Indian Ocean and corresponding rainfall over the GHA. This

was done by regressing gridpoint rainfall over the GHA to SST

indices over the Indian Ocean. The specific regions (boxes)

used to compute the indices are shown in Fig. 10a. These regions

(boxes) were selected in accordance with previous studies and

are based on the correlation analysis between spatially averaged

observed monthly rainfall over the GHA and concurrent grid-

point SST shown in Fig. 10a. During March, the SST gradient

between the northern (408–758E, 58S–108N) and southern (208–
608E, 408–208S) IndianOcean is used followingWainwright et al.

(2019), which linked a reducedMarch rainfall and delayed onset

of the long-rains with warm SSTs south of Madagascar. For the

May index, average SSTs in the northern Indian Ocean box

(58S–158N, 508–908E)were used, where the correlations with the
rainfall are the strongest and statistically significant.

Figure 10b shows SST–rainfall teleconnection patterns ob-

tained by regressing March rainfall against the meridional SST

gradient over the Indian Ocean for observations (top-left

panel) and individual S2S models (all other panels). The ob-

served patterns indicate that the equatorial parts of the region

(58S–108N) are positively correlated with the index indicating

above normal rainfall when the north-south gradient is strong.

On the other hand, the southern and southeastern parts of

Tanzania are negatively correlated with the index. In this case,

warm SSTs over south western Indian Ocean weaken the

meridional SST gradient which creates local convective activity

(enhanced moisture convergence), and lead to enhanced

rainfall in that part of the region. This is consistent with

Wainwright et al. (2019), which suggested warmer SSTs to the

south delay the northward progression of the rain-band and

lead to increased March rainfall in the southern part, but re-

duced rainfall over the equatorial and northern part of the

GHA. The positive coefficients over the eastern horn of Africa

are statistically significant at the 95% confidence level. It can

be seen that most S2S models reasonably reproduce the ob-

served features (Fig. 10b). This supports the idea that the rel-

atively strong coupling of SST and rainfall in March is well

captured by the S2S models, and that this leads to the high

monthly skill found for March.

Rainfall teleconnections for May against the SST index

over the northern tropical Indian Ocean are shown in Fig. 10c.

FIG. 8. Attribute diagram in predicting the monthly precipitation during March, April, and May over GHA for

the below-normal category (upper tercile) for the period from 1999 to 2010. In the diagram, the x axis shows the

average forecast probability, and the y axis shows the corresponding observed relative frequency.
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FIG. 9. Spread–error (SPR) ratio for (a) March and (b) April for the period from 1999 to

2010. SPR below 1 indicates underdispersion (overconfidence) and SPR greater than 1 indi-

cates overdispersion (underconfidence).
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The observations exhibit significant positive coefficients over

most of the equatorial and southern parts of the region, and

negative coefficients over western parts of Ethiopia and the

South Sudan–Sudan border areas. This implies that warm SST

anomalies in the northern Indian Ocean bring enhanced rain-

fall over most parts of Eastern Africa, but reduced rainfall over

parts of western Ethiopia, South Sudan, and Sudan. Most

models poorly represented both the spatial distribution and

amplitude of this teleconnection pattern, particularly the

positive associations over southern and eastern parts of the

region and the negative association over the summer mon-

soon areas. It can also be seen that there is a linkage between

the forecast skill and the teleconnection patterns. For ex-

ample, ECCC has quite good skill in May over northern

Somalia compared to the other models (Figs. 4c and 6c) and

also has the best representation of the teleconnection in that

region (Fig. 10c). Similarly, ECMWF showed good skill over

Western Kenya, and has a good representation to the SST

teleconnection in that area.

2) SOMALI LOW-LEVEL JET

The Somali low-level jet (SLLJ), a major component of the

Asian summer monsoon system, is one of the most important

sources of moisture for East Africa, particularly during the

summer season. It plays an important role in transporting

moisture from the IndianOcean to the region. Although the jet

is most intense during the boreal summer season, the north-

ward cross-equatorial flow of the jet starts in April and the jet

becomes active over the Indian Ocean during May. A study by

Nicholson (2015) indicated that the surface features of the

SLLJ begin to develop over the Indian Ocean in April, and by

May a deep and well-developed monsoon low becomes evident.

The climatological pattern of SLLJ during May from ERA5

and mean errors of the jet from S2S models in comparison to

the ERA5 are shown in Fig. S13. ERA5 shows the jet is

characterized by southeasterly flow south of the equator,

meridional flow around the equator along the East African

coast and southwesterly monsoonal flow over the Arabian

Sea. Generally, models which are able to capture these

large-scale features have higher skill. Consistent with pre-

cipitation performance, ECCC, ECMWF, JMA, KMA,

NCEP, and UKMO show smaller errors than the rest of the

models. On the other hand, BoM, CMA, HMCR, and ISAC

show the largest bias.

To examine the ability of S2S models in representing the

spatial patterns and magnitude of rainfall teleconnections with

the SLLJ, a regression analysis was applied to a scalar index of

the jet. A scalar index of jet intensity was constructed by

computing the square root of twice the spatial mean kinetic

energy (KE) of 850-hPa horizontal wind over a spatial domain

58S–208N; 508–708E, as in Boos and Emanuel (2009). Figure 11

shows rainfall teleconnections against SLLJ index estimated by

linear regression during May from observation and the S2S

models. The teleconnection patterns from ERA5 (Fig. 11, top

left) indicates a positive association between the SLLJ index and

rainfall over the summer rainfall region (northwestern parts

of the analyzed domain), indicating wet conditions associated

with a strong jet, possibly through increased moisture flux to the

region. It can be seen that most S2S models fail to capture the

pattern and the amplitude of the positive teleconnection over

FIG. 9c. As in (a), but for May.
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FIG. 10. (a) Correlations between monthly rainfall (March, April, and May) averaged over

GHA region and concurrent gridpoint SSTs for the period from 1982 to 2018 using CHIRPS

rainfall and NOAA SST data. Hatching indicates regions where the correlation is statistically

significant at the 95% confidence level. The boxes indicate location of SST regions used to

compute indices for the regression analysis. For March analyses, a western Indian Ocean

meridional index is formed by taking the difference between average SSTs over the northern

(red) and southern (blue) boxes shown. (b) Linear regression (mmmonth21 8C21) between the

March rainfall and the SST index (meridional gradient) over the western tropical IndianOcean

for the period from 1999 to 2010. Hatching indicates regions where the regression coefficient is

statistically significant at the 95% confidence level.
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the northern part of the region. In particular, BoM, CMA,

HMCR, andNCEPproduced signals with opposite signs to those

found in ERA5 over those areas. ECMWF and ECCC generally

capture the positive relationship between the SLLJ index and

rainfall, although ECMWF tends to overestimate the magnitude

and spatial extent of the positive teleconnection patterns.

Most areas of the equatorial and southern part of the re-

gion have weak and inverse relationships with the strength of

the SLLJ (ERA5). This implies that enhancement of the jet

leads to reduced rainfall over the equatorial and southern

part of the region. A study by Nicholson (1996) has also in-

dicated that a strengthening of the SLLJ is associated with

enhanced frictionally induced subsidence on the coast of East

Africa. The majority of S2S models fairly capture the nega-

tive relationship between the strength of the SLLJ and rain-

fall over the equatorial and southern parts of the region.

Analysis of the rainfall teleconnections against SLLJ index

from observations over a longer period (1981–2018) revealed

that regression coefficients are statistically significant at the

95% confidence level over most parts of the region (figure not

shown). This suggests that a large sample is crucial to have a

greater confidence on the skill of the models representing the

teleconnection patterns.

Overall, our analyses of the important large-scale features

revealed that the ability of the models in reproducing the

rainfall is partly linked to their ability in representing the im-

portant potential oceanic and atmospheric circulation features.

However, it is important to note that many other processes

contribute to the regional rainfall variability, and thus more

in-depth analysis of other relevant atmospheric and oceanic

features [such as the MJO, quasi-biennial oscillation (QBO),

and Arabian heat low] is crucial to better understand the

mechanisms behind the sources of monthly rainfall predict-

ability and elucidate both strengths and deficiencies in the S2S

models. For example, Vitart et al. (2017) showed that the

ECMWF and UKMO models consistently have higher bivar-

iate correlation for the MJO than the other models, with MJO

correlation remaining above 0.6 at several weeks lead time.

The ability of such models to better capture large-scale drivers

like the MJO could explain their consistently higher skill

throughout the different months.

4. Summary and conclusions

Due to the increasing demand for the availability of S2S

forecast products and information from the user community, it

is important to assess and document the prediction skill of

operational prediction systems for different regions and time

scales. This study evaluates and compares the skill of 11 state-

of-the-art operational models from the S2S database in pre-

dicting the monthly precipitation over the Greater Horn of

Africa during the long-rains. The prediction skill of S2S

models has been examined using reforecast/hindcast data by

combining forecasts at lead times from one week to zero over

the common period of 1999–2010. The skill has been quantified

using different deterministic and probabilistic forecast verifi-

cation metrics. The deterministic skill assessment is performed

using ensemble mean of all reforecast members, whereas the

FIG. 10c. As in (b), but for linear regression between the May rainfall and the SST index.
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probabilistic forecast verification analysis is performed using

all the ensemble members. It has been found that the skill of

the models in predicting rainfall is dependent on both the

month and region. The models generally showed good pre-

diction skill during the early stage of the rainy season in March

and poor prediction skill during the peak of the rainfall season

in April. In addition to the monthly evaluation, analysis for

model skill in weeks 11 2 and weeks 31 4 is also conducted.

It is shown that although weeks 1 1 2 have higher skill than

weeks 3 1 4, the weeks 3 1 4 still exhibit some skill, espe-

cially in March and May. The high prediction skill observed

during March is likely linked to strong teleconnections be-

tween March rainfall and SST over the Indian Ocean, which

is well represented by most S2S models. This is in accordance

with Camberlin et al. (2009) and Moron et al. (2013) find-

ings, which indicate the March rainfall anomaly patterns

are more spatially coherent compared to April and May,

and highly associated with tropical SSTs. The low prediction skill

duringApril might be linked with the directional shift in low level

winds as there is a progressive directional shift from northeasterly

in March to southeasterly in April, where the southeasterlies be-

come stronger and evident in May as highlighted by Nicholson

(2015). In May, a diagnostic of SLLJ suggests that the mean

error (phase bias) in the position of the jet is a stronger con-

tributor to the quality of the rainfall forecast than its repre-

sentation of the large-scale teleconnections.

Among the 11 prediction systems, ECCC, ECMWF, KMA,

NCEP, and UKMO demonstrate noticeably better skill than

the other models. In contrast the BoM, CMA, HMCR, and

ISAC prediction systems tend to yield poor prediction skills

over the region. Overall, ECMWF outperforms the rest of

the models, in terms of both deterministic and probabilistic

verification metrics. The best and worst performing models

identified in this study are in agreement with findings of the

recent study by de Andrade et al. (2019), which assessed the

deterministic forecast quality ofweekly accumulatedprecipitation

FIG. 11. Linear regression [mmmonth21 (m s21)21] betweenMay rainfall and the SLLJ index for the period from 1999 to 2010. Hatching

indicates regions where the regression coefficient is statistically significant at the 95% confidence level.
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over the globe. This study provides a crucial baseline skill as-

sessment for selecting those models which perform better, thus

informing which could be used to construct a multimodel en-

semble for producing consolidated forecasts for the GHA region.

It is worth noting that in doing so this study directly addresses the

WMO recommendation of the need to critically evaluate the skill

of forecasting models for different regions and time scale and for

selecting a subset of models for producing operational objective

S2S forecasts. It has been revealed that the prediction skill of the

models in reproducing the regional rainfall was partly linked with

the correct representation of some of the important potential at-

mospheric and oceanic processes and teleconnections such as the

SLLJ and SST anomalies over the tropical Indian Ocean.

Further diagnostic analysis of other potential drivers is needed

to better understand the sources of subseasonal predictability

and the linkage between the skill of rainfall forecast and rep-

resentation of key processes. Moreover, this analysis was per-

formed over a relatively short period (12 years) and thus a large

sample size is needed to provide greater confidence on the skill

of the S2S models in predicting the rainfall as well as repre-

senting the teleconnection patterns.
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