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Abstract
The study evaluates the ability of ten regional climate models (RCMs) to simulate the present-day rainfall over Uganda within the
Coordinated Regional Downscaling Experiment (CORDEX) for the period 1990–2008. The models’ ability to reproduce the
space-time variability of annual, seasonal, and interannual rainfall has been diagnosed. A series of metrics have been employed to
quantify the RCM-simulated rainfall pattern discrepancies and biases compared to three gridded observational datasets. It is
found that most models underestimate the annual rainfall over the country; however, the seasonality of rainfall is properly
reproduced by the RCMs with a bimodal component over the major part of the country and a unimodal component over the
north. Models reproduce the interannual variability of the dry season (December–February) but fail with the long and short rains
seasons even if the ENSO and IOD signal is correctly simulated by most models. In many aspects, the UQAM-CRCM5 RCM is
found to perform best over the region. Overall, the ensemble mean of the ten RCMs reproduces the rainfall climatology over
Uganda with reasonable skill.

1 Introduction

The rainfall pattern over Uganda shows a high degree of spa-
tial and temporal variability compared to other meteorological
parameters such as temperature, pressure, and wind. The spa-
tial variation has been attributed to the complex topography
(Oettli and Camberlin 2005; Yang et al. 2015), varied vegeta-
tion, and existence of large inland water bodies, which mod-
ulate the local climate (Thiery et al. 2015). The larger space-

time characteristics of rainfall over Uganda are mainly con-
trolled by the Intertropical Convergence Zone (ITCZ) and its
latitudinal movement, monsoonal winds, and moist westerlies
from Congo (Basalirwa 1995), but also, on interannual time
scale, by sea surface temperature (SST) gradient fluctuations,
particularly the El Niño Southern Oscillation (ENSO) (e.g.,
Indeje et al. 2000; Mutai and Ward 2000; Mutai et al. 1998;
Nicholson and Kim 1997; Ntale and Gan 2004) and Indian
Ocean Dipole (IOD) (e.g., Saji et al. 1999). ENSO
teleconnections affect the northern and southern regions of
Uganda differently. In the south, El Niño leads to higher rain-
fall amounts and emphasizes the bimodal pattern, while La
Niña leads to lower rainfall (Phillips and McIntyre 2000).

In addition, local features such as large inland water bodies
and topography introduce a significant modification in the
general wind and moisture fluxes over the region, coupled
with convective processes that generate a complex pattern
with sharp changes of rainfall amounts over short distances
(Nicholson 1996). These multiple-scale climatic processes re-
sult in varied rainfall regimes throughout the country as pre-
sented by Basalirwa (1995). Shortly, a unimodal rainfall re-
gime is experienced in the northern parts of the country, fur-
ther away from the equator from June to August, whereas a
bimodal regime is experienced nearer to the equator, with the
major season in March–May and a shorter rainfall season in
September–November. Eastern Uganda and some regions
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close to the equator receive three rainfall seasons exhibiting a
trimodal regime, with the third peak centered around July/
August due to the moisture influx from Atlantic Ocean and
the moist Congo basins by the westerly winds (Mutai et al.
1998; Ogallo et al. 1988), and a low pressure anomaly related
to a secondary convergence zone (Camberlin 2018).

As with many countries of East Africa, Uganda is already
experiencing dire consequences of erratic climatic conditions
that are associated with regional climatic changes (Anyah and
Qiu 2012; Shongwe et al. 2011). Uganda also experiences
frequent severe droughts (e.g., Nicholson 2017) with dramatic
consequences on the local population, with the most affected
region being the Bcattle corridor^1 and, more specifically, the
Karamoja region (Nimusiima et al. 2013). The frequency of
such episodes coincides with the current reduction in March–
May seasonal rainfall (Maidment et al. 2015; Yang et al.
2014). Furthermore, a study by Nsubuga et al. (2014) ob-
served mixed seasonal rainfall trends in southwestern
Uganda. This variability is expected to undermine regional
sustainable development (Sabiiti et al. 2018) as a result of
the region’s overreliance on agriculture and other rainfed sec-
tors (e.g., health, energy, and water management) to sustain its
economy as well as its relatively low adaptive capacity (IPCC
2013). Within this context, a better understanding of how
skillful climate models are in reproducing the observed re-
gional climate patterns is increasingly important, in order to
deliver reliable projections of seasonal to interannual rainfall
amounts for disaster prevention and, more generally, resource
planning.

Climate models have been developed to simulate the
climate on a mesoscale, regional, or global scale. The pri-
mary tools for understanding the large-scale climate and its
projected change under different forcing scenarios are
global climate models (GCMs). However, their coarse res-
olution precludes them from capturing the detailed pro-
cesses associated with regional climate variability and
changes that are required for national climate change as-
sessments (Giorgi et al. 2009; Rummukainen 2010; Wang
et al. 2004), especially over regions like Uganda with het-
erogeneous land surface cover such as lakes, forests, and
mountains that modulate the climate signals at fine scales
(Giorgi et al. 2009).

When regional climate models (RCMs) are driven by
GCMs, biases inherited through the lateral boundary condi-
tions are added to those of the RCM; as a result, downscaling
is not always able to improve the simulation skills of large-
scale forcing (e.g., Panitz et al. 2014), with cases where the
RCM climate change signal can substantially differ from that
of the driving GCM (e.g., Dosio and Panitz 2016). However,
added value of RCMs in downscaling GCMs is found

especially in the fine scales and in the ability of RCM to
simulate extreme events (e.g., Dosio et al. 2015).

Consequently, the use of outputs from RCMs has become a
vital and effective tool for studying regional climate change
and variability due to their capability of capturing finer spatial
and temporal scales that are required for climate change im-
pacts and adaptation studies (Jones et al. 2004; Pal et al. 2007;
Wang et al. 2004). Previous studies have focused on assessing
the performance of RCMs over the East African region (e.g.,
Sun et al. 1999a, b; Anyah and Semazzi 2006, 2007; Diro
et al. 2012; Endris et al. 2016, 2013; Kipkogei et al. 2016;
Ogwang et al. 2014, 2015, 2016; Opijah et al. 2014; Segele
et al. 2009) as well as over the Lake Victoria basin (e.g.,
Anyah 2005; Anyah et al. 2006; Sabiiti 2008; Thiery et al.
2015; Williams et al. 2015), but very few studies have been
focused on national scale especially over Uganda (e.g.,
Mugume et al. 2017a, b; Nandozi et al. 2012; Nimusiima
et al. 2014), and in addition, these studies are largely based
on the outputs from a single RCM and one observational
dataset.

In order to properly understand the biases in RCM simula-
tions, a study needs to make use of an ensemble of RCMs and
needs to focus on specific regions, as RCMs can often do well
over some areas and worse over the others (Kalognomou et al.
2013). The multi-RCM experiment Coordinated Regional
Downscaling Experiment (CORDEX, Giorgi et al. 2009), ini-
tiated by the World Climate Research Program of the World
Meteorological Organization, aims to provide an opportunity
for generating high-resolution regional climate projections
which can be used for assessment of future impacts of climate
change at regional scales. However, the skills of the RCMs
have to be assessed, and their performances evaluated to es-
tablish their strengths and weaknesses, before they can be
used for generating downscaled projections of the future cli-
mate: this evaluation is performed by using appropriate met-
rics to compare models’ outputs against reference data from
observations or reanalyses (Islam et al. 2008; Kim and Lee
2003; Lenderink 2010).

In the framework of the CORDEX-Africa project
(Hewitson et al. 2012), the ability of RCMs in simulating
the East African rainfall is presented in Endris et al. (2013)
and Endris et al. (2016), who demonstrate that the models
simulate the main features of rainfall climatology adequately,
although there are significant biases among individualmodels.
The analysis shows that the multimodel ensemble generally
outperforms any individual model, as previously found by
Nikulin et al. (2012), Kalognomou et al. (2013), and Kim
et al. (2014). Nevertheless, as shown by Nikulin et al.
(2012) and Kim et al. (2014), RCMs produce a quasi-
systematic dry bias over Uganda, and consequently, more in-
vestigations are needed in order to assess during which season
the biases are strongest. In addition, Uganda does not lie in
any of the targeted homogenous subregions of the East

1 Area stretching fromKaramoja region in the northeast, through central to the
southwest of the country.
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African domain considered in Endris et al. (2013). Therefore,
a national scale-based model skill assessment is necessary.

The aim of this study is to assess the ability of CORDEX
RCMs in simulating the rainfall characteristics over Uganda.We
also investigate the ability of the models to capture the influence
of large-scale features such as ENSO and IOD on Ugandan
rainfall. The study is guided by two main questions: (1) How
well do CORDEX RCMs reproduce the observed annual and
seasonal rainfall patterns over Uganda? (2) How well do
CORDEX RCMs replicate the present-day interannual variabil-
ity of rainfall and the teleconnection with ENSO and IOD?

The study is organized as follows: in Section 2, a brief
description of the study area and next the observed and
modeled datasets and methods used are presented. In
Section 3, the results and discussion begin with the annual
rainfall, seasonal rainfall, interannual variability, and the re-
sponse of regional rainfall to ENSO and IOD. Finally,
Section 4 synthetizes the results and concludes the study.

2 Data and methods

2.1 Study area

This study focuses on Uganda, which lies in the East African
region, astride the equator between latitudes 4° 12′N and 1° 29′
S and longitudes 29° 34′ E and 35° 29′ E. The central part of the
country consists of a relatively flat plateau at an elevation of
1000 to 1300 m asl, with higher ground areas both to the east
(e.g., Elgon mountains and Karamoja) and the west (e.g.,
Rwenzori and Mufumbira mountains). The western part of the
country is also dissected by the Western Rift Valley running
from north to south at an elevation of 600–900 m asl. Africa’s
largest lake, Lake Victoria, occupies the southeastern corner of
the country. Other significant water bodies include Lake Albert
in the west and Lake Kyoga in the center (see Fig. 1).

2.2 Observed and modeled rainfall data

High-quality observational datasets for Africa are scarce, and
significant discrepancies exist among different datasets mainly
due to first the limited number of gauge stations and second to
retrieval, merging, and interpolation techniques (Dosio et al.
2015; Nikulin et al. 2012; Panitz et al. 2014; Sylla et al. 2012).
Therefore, in this study, three observed rainfall datasets are
utilized. Two gauge-based gridded datasets available at 0.5°
spatial and monthly temporal resolution provided by the
Global Precipitation Climatology Centre (GPCC; version 7,
1901–2013, Schneider et al. 2015) and the Climate Research
Unit (CRUTS3.10, 1901–2012, Harris et al. 2014) are used. In
addition, a satellite-gauge combined dataset from the Climate
Hazards Group InfraRed Rainfall (CHIRPS, Funk et al. 2015)
available at a 0.05° (5 km) spatial resolution from 1981 to

present is used. It should be noted that GPCC was chosen as
the reference observational dataset for this study (similar to the
previous studies on Africa: Endris et al. 2016, 2013; Favre
et al. 2016; Kalognomou et al. 2013 among others). Rainfall
from ERA-Interim, with a spatial resolution of 0.75°, has also
been used in order to assess the added value of RCMs in
comparison to the forcing data over the studied region.

Monthly rainfall (unit: mm/day) output from ten RCMs
(Table 1) forced by ERA-Interim reanalysis data (Dee et al.
2011), over the period 1989–2008, has been used. The spatial
resolution of the data is 0.44°, corresponding to a horizontal
distance of roughly 50 km.

2.3 Methods

In order to compare the RCM outputs to the observations, the
modeled data have been adjusted to the reference data grid
(i.e., from 0.44° to 0.5°) by applying a bilinear interpolation
as in Nikulin et al. (2012), Kalognomou et al. (2013), Favre
et al. (2016), and Akinsanola et al. (2017). The same proce-
dure has been applied to ERA-Interim reanalysis data (from
0.75° to 0.5°) and CHIRPS (from 0.05° to 0.5°). Lastly, con-
sidering 1989 as a spin-up year for the RCMs’ simulations, the
study covers the period 1990–2008 (19 years). While the ref-
erence dataset GPCC does not provide values for precipitation
over Lake Victoria, a mask has been created over the lake for
the models and other observational datasets (CHIRPS and
CRU) to facilitate consistent comparison.

An initial assessment is made of annual mean rainfall spa-
tial pattern over Uganda (Section 3.1). Each model output and
the ensemble mean of the ten RCMs have been compared to
observations over the area (28.75° E–35.75° E, 1.75° S–4.25°
N, see Supplementary material, Fig. S1). The annual mean
rainfall biases of the models, ensemble mean, ERA-Interim
reanalysis, and other observations (CHIRPS and CRU) with
respect to GPCC have been quantified and mapped (Fig. 2).
Complementary metrics, such as the root mean square error
(RMSE), have been computed to evaluate the difference be-
tween predicted and observed values (Table 2).
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Secondly, the rainfall seasonality over the studied region has
been assessed by means of Hovm ller diagrams (Section 3.2,
similar to previous studies over Africa such as Nikulin et al.
2012; Otieno and Anyah 2012; Akinsanola et al. 2015, 2017).
A Hovm ller diagram is a time-longitude or time-latitude depic-
tion of a parameter (e.g., rainfall, temperature), used to assess or
diagnose the behavior of a parameter over a span of latitudes or
longitudes through time. In our case, we assess the timing and
the latitudinal band location of seasonal rainfall over the region
(i.e., the seasonal path of the ITCZ). To visualize the observed
rainfall seasonality over the region of study, a Hovm ller dia-
gram for GPCChas first been plotted. Next, the disagreement in
the rainfall seasonality between the RCMs (including the en-
semble mean), ERA-Interim, the other observational datasets



standard deviation for each month in order to distinguish if
the RCMs are able, for instance, to simulate the higher inter-
annual variability of the short rains season than the long rains
season (section 3.3.1, Fig. 5). This metric allows to verify
which month of the year shows realistic interannual variance
in the models, compared to the observations. Second, to in-
vestigate more deeply the capacity of the RCMs in simulating
interannual variability of rainfall, the seasonal standardized
rainfall indices (SRIs) derived from the RCMs (including the
ensemble mean), ERA-Interim, and the observational datasets
have been computed (Section 3.3.2, Fig. 6 and Supplementary
material, Fig. S4). SRIs allow to compare more easily the

Fig. 1 Topography of the studied region (GTOPO30 USGS, approximately 1 km resolution, unit: m)
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(CHIRPS and CRU), and GPCC has been diagnosed and spe-
cifically analyzed (Fig. 3) to determine the season when the
biases in the models are strongest. In order to synthetically
quantify and visualize the individual capacity of the models in
simulating the seasonal rainfall pattern, a Taylor diagram
(Taylor 2001) has been constructed from the Hovm ller dia-
grams. The standard deviation (SD), the RMSE, and the corre-
lation between model output and observations quantify thus the
model performance (Fig. 4).

Next, we have evaluated the ability of RCMs to reproduce
the interannual rainfall variability over the region
(Section 3.3). First, we computed the averaged temporal



models and observations independently of biases in means
and in standard deviations. Indeed, all values of indices are
thus expressed in z-scores, i.e., the mean is equal to 0 and the
standard deviation is equal to 1. In addition, to evaluate the
performance of the models, seasonal correlation coefficients
with the reference GPCC are calculated over the period 1990–
2008 and are shown in Table 3.

Finally, complementary analysis of the relationship be-
tween large-scale oscillations such as ENSO and IOD and
rainfall over Uganda has been performed (Section 3.4,
Fig. 7). In this study, ENSO has been monitored using two
SST indices over the Pacific Ocean: NINO1.2 (an average of
SST over 0–10° S and 90–80° W; Trenberth and Stepaniak
2001) and NINO3.4 (an average of SST over 5° S–5° N and
170–120° W; Trenberth 1997). Both SST indices are calculat-
ed from the Extended Reconstructed Sea Surface Temperature
(ERSST) v5 dataset (Huang et al. 2017) and are provided by
the Earth System Research Laboratory.2 Note that, to quantify
El Niño and La Niña phases (warm and cold episodes, respec-
tively), we used Oceanic Niño Index (ONI) derived from
ERSSTv5 dataset and published online3 by the Climate
Prediction Centre (CPC) of the National Oceanic and
Atmospheric Administration (NOAA).

For IOD, the Dipole Mode Index (DMI, Saji et al. 1999),
which quantifies the difference between the area average SST
in the western equatorial Indian Ocean (50–70° E and 10° S–
10° N) and southeastern equatorial Indian Ocean (90–110° E
and 10–0° S), has been used. This index is provided by the
Japan Agency for Marine-Earth Science and Technology
(JAMSTEC) found on their Application Laboratory website.4

A 3-month sliding window correlation analysis between

Ugandan rainfall and the SST indices has been performed to
evaluate if the models are able to reproduce the ENSO/IOD
signature. We have thus verified if the modeled relationship
with ENSO/IOD is stronger during the short than the long
rains season, as it happens in observations.

3 Results and discussions

3.1 Spatial distribution of annual rainfall over Uganda

The spatial distribution of annual rainfall, as shown by GPCC
(Fig. 2a), is relatively uniform over most of the country, with
amounts between 3 and 4 mm/day, on average. Nevertheless,
along the shores of Lake Victoria, annual rainfall is more
abundant and exceeds 4 mm/day. This is associated with land
and lake breezes which reinforce convective processes.
Moving toward the north east, rainfall decreases toward the
semiarid area of Karamoja. Rainfall is relatively rare there,
with an annual mean below 2 mm/day.

Looking at the other observational datasets (CHIRPS and
CRU, Table 2 and Fig. 2n–o), their root mean square errors,
with respect to GPCC, show rather small values (about 0.4),
meaning that there is no large bias in the spatial distribution of
GPCC mean annual rainfall. It might be noted, however, that
both CHIRPS and CRU show a systematic dry bias along the
west shore of the lake, signifying that GPCC may overesti-
mate rainfall, of few tenths of millimeters per day, over this
peculiar area. These drier conditions over the western shores
of Lake Victoria have also been shown by Jury (2017). Also, it
can be noted that CRU (CHIRPS) is on average slightly drier
(wetter) than GPCC. On the other hand, the ERA-Interim
reanalysis tends to show wetter conditions over most parts
of the region with larger wet biases along the east shores of
Lake Victoria. Inversely, the west shores are drier in the

2 https://www.esrl.noaa.gov/psd/data/climateindices/list/
3 http://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/
ONI_v5.php
4 http://www.jamstec.go.jp/frcgc/research/d1/iod/iod/dipole_mode_index.
html

Table 1 The list of RCMs used in this study

Acronym Center of research RCM References

BCCR-WRF331 Uni Research and the Bjerknes Centre for Climate Research WRF331 Skamarock et al. (2008)

CCCma-CanRCM4 Canadian Centre for Climate Modelling and Analysis (Canada) CanRCM4 Scinocca et al. (2016)

CLMcom-CCLM4-8-17 CLM community CCLM4-8-17 Rockel et al. (2008)

CNRM-ALADIN52 Centre National de Recherches Météorologiques (France) ALADIN52 Déqué (2010)

DMI-HIRHAM5 Danmarks Meteorologiske Institut (Denmark) HIRHAM5 Christensen et al. (2007)

KNMI-RACMO22T Koninklijk Nederlands Meteorologisch Instituut (Netherlands) RACMO22T van Meijgaard et al. (2008)

MOHC-HadRM3P Met Office Hadley Centre (UK) HadRM3P Jones et al. (2004)

MPI-CSC-REMO2009 Max Planck Institute (Germany) REMO2009 Jacob et al. (2007)

SMHI-RCA4 Sveriges Meteorologiska och Hydrologiska Institut (Sweden) RCA4 Samuelsson et al. (2011)

UQAM-CRCM5 Université du Québec à Montréal (Canada) CRCM5 Zadra et al. (2008),
Hernandez-Diaz et al. (2013)
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reanalysis than in observations and also the area just north-
ward of Lake Kyoga.

Contrary to ERA-Interim reanalysis, most of the
models (seven out of ten) underestimate the annual

mean rainfall over Uganda. More specifically, the
CLMcom-CCLM4-8-17 and MPI-CSC-REMO2009 sim-
ulations show a general dry bias (~− 50% compared to
GPCC) over the entire region (Fig. 2d, i; see also in

Fig. 2 aAnnual mean rainfall (1990–2008) according to GPCC and mean biases over the period quantified as the difference between the models (b–k),
ensemble (l), ERA-Interim (m), CHIRPS (n), CRU (o), and GPCC (unit: mm/day)

1122 J. Kisembe et al.



Supplementary material Fig. S1) and exhibit a relative
large RMSE (Table 2, see also Dosio et al. 2015; Panitz
et al. 2014). On the contrary, two simulations present
wetter conditions: CCCmaCanRCM4 and, to a lesser
extent, UQAM-CRCM5, with a mean of 4.85 (+ 45%)
and 3.95 (+ 20%) mm/day, respectively, and a RMSE of
1.71 and 1.21 mm/day, respectively.

Moreover, a quasi-systematic wet bias can be noted
over the highest areas of the region, such as over the
Elgon Mountain (in the east), the Rwenzori Mountains,
and the Lendu Plateau (in the west, along the Albertine
Rift, see Fig. 1). These biases, linked to the orography,
are particularly marked in the SMHI-RCA4, DMI-
HIRHAM5, BCCR-WRF331, and CNRM-ALADIN52
simulations and are also notable in the ensemble
mean. The statistical relationship between orography
and spatial distribution of biases in mean rainfall of
CORDEX simulations has also been shown by Favre
et al. (2016) for the South African region.

The ensemble mean of the ten models is generally
drier than observation, specifically along the west
shores. On the other hand, it has to be noted that
the ensemble mean outperforms all individual models
and, at the same time, presents a lower RMSE than
ERA-Interim (0.94 mm/day against 1.39). A better
performance than ERA-Interim is also shown by
UQAM-CRCM5, CNRM-ALADIN52, and KNMI-
RACMO22T.

3.2 Seasonal rainfall

The seasonal variation of rainfall over Uganda as
displayed by GPCC (Fig. 3a, see also Supplementary
material, Fig. S3; (6)) shows that the annual cycle is
mainly bimodal with two main rainfall peaks. The first
one occurring in March–May is named the Blong rains^
season and the second one in September–November is
named the Bshort rains^ season (Basalirwa 1995). This
periodicity in rainfall is principally linked to the latitudi-
nal displacement of the Intertropical Convergence Zone,
which crosses the studied region twice a year.

The general pattern shows that the bimodal compo-
nent is much more pronounced around the equatorial
belt, between latitude 1.5° S and 1.5° N (see also the
Supplementary material Fig. S3; (3–5)), with the months
(July–September) being relatively dry. Inversely, to the
north of 1.5° N, the July–September season becomes
less dry and shows, to the north of 3° N, wet condi-
tions, with a peak in August. This rainfall peak is as-
sociated with the moisture influx from the Congo basin
(Mutai et al. 1998; Phillips and McIntyre 2000) that is
controlled by the St Helena high centered off south-west
Africa. By consequence, over the north of the country,
the rainfall annual cycle tends to be unimodal with wet
conditions from March to October and drier conditions
from November to February (see Supplementary materi-
al Fig. S3; (1–2)).

Both CHIRPS and CRU, as well as ERA-Interim
(Fig. 3n, o, and m, respectively), clearly reproduce the
GPCC seasonal pattern, although ERA-Interim tends to
show wetter conditions all throughout the year, with
larger wet biases during the drier months (January,
February) and the beginning of the long rains season
(March, April). Maidment et al. (2013) also showed that
ERA-Interim overestimates rainfall over Uganda. In
their study, the reanalysis (among other gridded datasets
such as the ones derived from satellites) is compared to
rain gauge records throughout the country for the year
period from February to June. They also found that the
wet biases in ERA-Interim are particularly marked in
February, March, and April. However, in Fig. 3m, we
note an exception over the southern part of the region
where ERA-Interim presents a slight dry bias from May
to September.

Table 2 Mean annual rainfall (left column) and the spatial root mean
square error (right column) in the annual mean rainfall with respect to
GPCC for the models, ensemble, ERA-Interim, CHIRPS, and CRU over
Uganda. Units: millimeters per day

Mean RMSE

BCCR-WRF331 2.92 1.84

CCCma-CanRCM4 4.85 1.71

CLMcom-CCLM4-8-17 1.75 1.85

CNRM-ALADIN52 2.90 1.21

DMI-HIRHAM5 3.06 2.31

KNMI-RACMO22T 2.94 1.23

MOHC-HadRM3P 3.74 1.58

MPI-CSC-REMO2009 1.61 2.02

SMHI-RCA4 2.40 1.77

UQAM-CRCM5 3.95 1.20

ENSEMBLE 3.02 0.94

ERA-Interim 4.22 1.39

CHIRPS 3.42 0.46

CRU 3.21 0.43

The reference is GPCC (mean = 3.35 mm/day). Number of documented
grid points is 188
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More in details, on the Hovm ller diagram for GPCC,
it is shown that the onset of the long rains season,
between February and March, tends to synchronically
occur over the whole country. Nevertheless, concerning
the short rains season, the pattern is less marked and
the onset tends to be earlier (August–September) over
the center of the country and later (September–October)
over the south.



When analyzing the RCM results, it is evident that almost
all the models are able to reproduce the observed bimodal
annual cycle. However, most of them (seven out of ten) un-
derestimate the rainfall intensity for the season stretching from
March to May, in particular CLMcom-CCLM4-8-17 and
MPI-CSC-REMO2009 (which were already identified as the
driest simulations). Also, it can be noted that, in addition to the
general dry bias, CLMcom-CCLM4-8-17 tends to simulate
relatively more rainfall during the short rains season than dur-
ing the long rains season. This last feature is also noted for
BCCR-WRF331, which overestimates the magnitude of

the short rains season (which also appears too early) in
comparison with the long rains season. Concerning the
wetter simulations, CCCma-CanRCM4, UQAM-CRCM5,
and to a lesser extent MOHC-HadRM3P tend to produce
rainfall all through the year and at all latitudes. It is worth
noting that those models also exhibit a more pronounced wet
bias in October–November (i.e., the short rains season). Also,
a strong overestimation of rainfall in April–May is particularly
shown by UQAM-CRCM5 (i.e., the long rains season). By
consequence, in the UQAM-CRCM5 simulation, the bimodal
component of seasonal rainfall is strongly marked and at all
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Fig. 3 Hovm ller diagrams. a Averaged time-latitude cross section of
monthly mean rainfall (color scale bounded at 8 mm/day, interval contour
0.5 mm/day) according to GPCC and the monthly mean rainfall (colors)

and mean biases with respect to GPCC (contour interval 0.5 mm/day and
dashed lines are for negative values) for the models (b–k), ensemble (l),
ERA-Interim (m), CHIRPS (n), and CRU (o) over Uganda



latitudes including the northern region of the country where
the cycle should be more unimodal.

The ensemble mean of the ten models underestimates the
rainfall, specifically during the long rains season and, on the
contrary, tends to slightly overestimate the rainfall during the
short rains season. Nevertheless, it is found that the ensemble
mean outperforms all individual models.

The Taylor diagram (Fig. 4) presents a synthetic visu-
alization of the skill of the ten RCMs in reproducing the
annual cycle of rainfall over the studied domain as pre-
sented by Fig. 3, i.e., the Hovmöller diagrams. The devi-
ation from observations (GPCC, reference data) of each
model is quantified by the standard deviation, the

correlation coefficient, and the centered root mean square
error between the model and observation as shown in Fig.
4 by the light gray curves. It is worth noting that the values
are not standardized, and the unit of SD and RMSE is
millimeters per day. The SDs show that, with the excep-
tion of CLMCom-CCLM4-8-17, CNRM-ALADIN52,
KNMI-RACMO22T, and MPI-CSC-REMO2009, all
RCMs and the ensemble mean overestimate the seasonal
rainfall variance over the country, i.e., the contrast be-
tween wet and dry months. CCCma-CanRCM4 and
UQAM-CRCM5 (already found to overestimate seasonal
mean rainfall) show large values of both SD and RMSE
and high correlation coefficients.

Fig. 4 Taylor diagram built from
latitudinal cross section as shown
on Fig. 3 (standard deviation is
expressed in mm/day)

Fig. 5 Standard deviation
computed over the period 1990–
2008 (unit: mm/day) for Uganda
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Finally, the seasonality of rainfall derived from the ensemble
mean outperforms all individual models and the ERA-Interim
(whose performance remains modest) and is the closest to ob-
servations. A better performance than ERA-Interim is shown by
MOHC-HadRM3P andUQAM-CRCM5 in terms of correlation
coefficient (correlation equal to 0.9). As expected, both obser-
vational datasets (CHIRPS and CRU) are very close to GPCC.

3.3 Interannual variability of rainfall

3.3.1 Interannual variability of monthly rainfall

Several studies (e.g., Diro et al. 2011; Endris et al. 2013; Indeje
et al. 2000; Mutai and Ward 2000; Philippon et al. 2002) have
shown that the short rains season experiences a larger degree of
interannual variability than the long rains season. This stronger
interannual variability is linked to tropical SSTanomalies (i.e., to
the phases of ENSO and IOD).

Here, we assess the ability of the RCMs to reproduce these
features by computing, for each month, the standard deviation

over the 19 years for the ten RCMs, ensemble mean, ERA-
Interim, and the observational datasets (GPCC, CHIRPS, and
CRU); results are shown in Fig. 5. With reference to GPCC, it
can be shown that the mean standard deviation is strongest in
November (SD = 1.73 mm/day) and weakest in January (SD =
0.96 mm/day). Generally, it can also be observed that the short
rains season presents an interannual variability slightly stronger
than that of the long rains season. CHIRPS and ERA-Interim
identify this pattern; nevertheless, ERA-Interim tends to over-
estimate the standard deviation for all months of the year, while
the inverse is observed for CHIRPS for which the standard
deviation tends to be generally underestimated. CRU is rela-
tively close to GPCC; nevertheless, themaximum of variance is
centered in September instead of November. By consequence,
it can be noted that the observational datasets are not in good
accordance concerning the interannual variability of monthly
rainfall over Uganda. The spread between the three datasets is
relatively large concerning this metric.

Compared to GPCC, the interannual variability over
Uganda is underestimated by most models (eight out of ten),

Fig. 6 Standardized rainfall
indices for the annual and
December–February (DJF),
March–May (MAM), June–
August (JJA), and September–
November (SON) seasons over
Uganda for the 1990–2008
period. Gray shading is the full
range of the RCM outputs, and
the yellow shading is the 25th–
75th percentile range (i.e., inter-
quartile range)
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particularly by CNRM-ALADIN52, MPI-CSC-REMO2009,
and KNMI-RACMO22T. These three simulations lie outside
the observations envelop. On the other hand, BCCR-WRF311
and CLMCom-CCLM4-8-17 overestimate the mean standard
deviation particularly for the short rains season. Furthermore,
it should be noted that the overestimation of either the annual
mean or seasonal rainfall is not exactly proportional to the
overestimation of the mean standard deviation, i.e., the stron-
gest mean standard deviations are not necessarily assigned to
the wettest models and vice versa.

The RCMs’ ensemble mean shows the weakest inter-
annual variability throughout the year. This is a result of
the smoothing effect due to the averaging of the monthly
outputs of ten RCMs. In general, the ensemble mean of
the models tends to overestimate the total variance ex-
plained by the seasonality and underestimate the total var-
iance explained by the interannual variability (e.g., Favre
et al. 2016). Nevertheless, it has to be noted that the shape
of the pattern is correctly reproduced by the ensemble
mean with an interannual variability relatively stronger
in November (i.e., short rains season).

3.3.2 Interannual variability of seasonal rainfall

The interannual variability of seasonal rainfall over Uganda
derived from observational datasets (GPCC, CHIRPS, and
CRU), ERA-Interim, ensemble mean, and RCMs is presented
in Fig. 6 (see also results for individual models in

Supplementary material Fig. S4). To facilitate the comparison
between the models and observations, seasonal time series
have been normalized; thus, the long-term mean is equal to
0 and the anomalies are expressed in number of standard de-
viations. The SRIs have been calculated for the entire year
(annual) and also for each season: December–February (dry
season), March–May (long rains), June–August (moderate
wet season), and September–November (short rains). Next,
from the seasonal SRIs, Pearson correlation coefficients be-
tween the reference data GPCC and the RCMs, ensemble
mean, ERA-Interim, and other observational datasets
(CHIRPS and CRU) have been computed and are shown in
Table 3. The correlations facilitate a better evaluation of the
capacity of models to reproduce the observed interannual
variability.

First concerning observational datasets, the correlation
coefficients between GPCC and CHIRPS and CRU
(Table 3) show relatively high values, in general greater
than 0.71 and 0.78, respectively, implying that they are
consistent in reproducing the interannual variability pattern
across all seasons (see Fig. 6). All of them show the same
extremely wet and dry years relative to the 1990–2008
climatology, with small differences in magnitude in some
years. It is generally found that CHIRPS shows higher
correlation with GPCC than CRU, in terms of interannual
variability and for all seasons.

Although ERA-Interim reanalysis shows a temporal pat-
tern relatively similar to the observational datasets (Fig. 6),
the annual and seasonal correlation coefficients can vary
greatly, ranging between 0.21 and 0.75. The interannual var-
iability of the March–May season (i.e., the long rain season) is
poorly correlated with GPCC with r = 0.21 as well as the
annual rainfall with r = 0.30 (i.e., those coefficients of corre-
lation are not significant according to a two-sided t test).
Indeed, ERA-Interim is relatively far from observations dur-
ing the years 2003, 2004, and 2005, showing thus a strong
overestimation especially during the wettest seasons. It has to
be reminded that ERA-Interim exhibits a relatively large wet
bias and RMSE in the annual and in seasonal mean rainfall
compared to the observations (Table 2, Figs. 2m and 4).

Mostmodels including the ensemblemean are consistent in
representing the temporal pattern of the June–August and
September–November seasons with the exception of MPI-
CSC-REMO2009 simulation, which presents low (and not
significant) correlation coefficients in both seasons, while
BCCR-WRF331 poorly reproduces the temporal pattern (with
r = − 0.07) of the short rains season. It can be noted that the
observed reference dataset GPCC was within the RCMs’
range for the 2007 extreme rainfall event during the June–
August season, an indication that the models captured well
this particular wet year. With regard to the September–
November season, there is a large spread among the
models. For example, about five RCMs out of ten correctly

Table 3 Pearson correlation coefficients (r) between standardized
rainfall indices (shown in Fig. S4) derived from GPCC and the RCMs,
ensemble mean, ERA-Interim, and other observational datasets (CHIRPS
and CRU) for the December–February (1st column), March–May (2nd
column), June–August (3rd column), and September–November (4th col-
umn) seasons and the annual (5th column), over the period 1990–2008

DJF MAM JJA SON Annual

BCCR-WRF331 0.83 0.11 0.56 − 0.07 − 0.13
CCCma-CanRCM4 0.72 0.49 0.69 0.31 0.44

CLMcom-CCLM4-8-17 0.90 0.37 0.57 0.53 0.22

CNRM-ALADIN52 0.85 0.41 0.48 0.60 0.22

DMI-HIRHAM5 0.79 0.30 0.53 0.62 0.15

KNMI-RACMO22T 0.82 0.37 0.57 0.54 0.49

MOHC-HadRM3P 0.81 0.38 0.68 0.68 0.32

MPI-CSC-REMO2009 0.72 0.19 0.34 0.40 − 0.38
SMHI-RCA4 0.75 0.09 0.20 0.50 0.10

UQAM-CRCM5 0.85 0.57 0.59 0.80 0.79

ENSEMBLE 0.89 0.51 0.70 0.69 0.45

ERA-Interim 0.75 0.21 0.49 0.63 0.30

CHIRPS 0.98 0.85 0.91 0.83 0.78

CRU 0.94 0.71 0.76 0.77 0.74

Values in bold are significant at the 99% confidence level (t test)
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reproduce the 1997 high rainfall event that was associated
with a strong El Niño in phase with a positive IOD (see
Fig. S4), while BCCR-WRF331 and CCCma-CanRCM4
show strong dry anomalies.

However, the majority of models fail in reproducing the
annual and March–May seasonal interannual variability with
generally low correlation coefficients. For instance, MPI-
CSC-REMO2009 (r = − 0.38) and SMHI-RCA4 (r = 0.09)

Fig. 7 Temporal correlations
between ENSO (NINO1.2 (a) and
NINO3.4 (b)) and IOD (c) indices
and Ugandan rainfall derived
from RCMs, ensemble mean,
ERA-Interim, GPCC, CHIRPS,
and CRU, over the period 1990–
2008. A 3-month sliding window
is used to compute the
correlations. Horizontal dotted
and dashed lines are the 95 and
99% threshold of significance (t
test)
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simulations present the lowest correlation coefficients in the
annual rainfall and March–May season, respectively.
Particularly, in 2000, the observed annual and March–May
seasonal rainfall was anomalously low and outside of the
RCMs’ envelop, meaning that all models fail in reproducing
this particular dry year. Also, we can note that in 1993 for the
annual rainfall, the ensemble mean shows a negative value,
outside of the RCMs’ range. This is due to the fact that the
ensemble mean is computed a priori, and for this specific year,
all models show anomalously low values, and some of them,
strong negative values (e.g., UQAM-CRCM5; see Fig. S4).
Lower rainfall with a relative small spread between models
has a consequence, that the year 1993 appears as the driest
year of the period according to the ensemble mean, while this
is neither the driest year for individual models nor for
observations.

Otherwise, the weak correlations during the March–
May season may be attributed to the dominance of region-
al and local factors rather than large-scale ones in the
modulation of the seasonal rainfall pattern (Camberlin
and Philippon 2002; Indeje et al. 2000). It could also be
noted that this season is not homogeneous in terms of
interannual variabil i ty, since causal factors and
teleconnections are markedly different in each month, a
point also raised by Nicholson (2017).

The results for the December–February dry season show
that the models and the ensemble mean have strong positive
and significant correlation coefficients with GPCC (Table 3).
All models are consistent in reproducing the interannual pat-
tern of the December–February season with the observed ref-
erence dataset GPCC within the RCMs’ range (Fig. 6), spe-
cifically, the well representation of the rainfall peaks during
the DJF 1997/1998 and 2006/2007 El Niño events (Fig. S4).
This means that regional and large-scale processes have a
dominant role in rainfall variability of the driest season.

It is noteworthy that the interannual variability of the annu-
al rainfall derived from UQAM-CRCM5 is relatively close to
observations and outperforms the ensemble mean. This model
is also the only one to show significant positive correlation
with GPCC, higher than 0.7. More in details, this simulation
succeeds in reproducing the interannual variability of rainfall
during the half-year period from September to February (i.e.,
the period including the short rains and the dry seasons).
Additionally, the ensemble mean again outperforms ERA-
Interim (in all seasons); the improvement is best shown for
the two seasons where the models have the lowest skill. The
reason why the skill for annual rainfall is generally lower than
that of individual seasons likely comes from the fact that it
combines the ability of the models to reproduce (i) the inter-
annual variability of seasonal rainfall and (ii) the relative
weight of each season in the annual rainfall amount (as
shown by some discrepancies in the seasonal rainfall
patterns discussed in Section 3).

3.4 Relationship with ENSO and IOD

The interannual variability in rainfall over the East African
region is linked with sea surface temperature anomalies over
the tropical Pacific and Indian Oceans. Particularly, ENSO
(e.g., Ropelewski and Halpert 1987) and IOD (e.g., Saji
et al. 1999; Yamagata et al. 2004) are suggested to be domi-
nant drivers of rainfall variability over the region specifically
during the short rains season, and this association has been
extensively studied (e.g., Mutai et al. 1998; Nicholson and
Kim 1997, 2000; Bahaga et al. 2015; Endris et al. 2013,
2016; Indeje et al. 2000). Over Uganda, it has also been shown
that the signature of ENSO and IOD is more evident during
the short rains than the long rains season (e.g., Camberlin and
Philippon 2002; Diro et al. 2011; Endris et al. 2016, 2013;
Mutai et al. 1998; Ropelewski and Halpert 1987; Rowell
2013; Saji and Yamagata 2003; Ummenhofer et al. 2009). In
addition, the northern summer period in the north of the coun-
try also shows a strong relationship with ENSO, although it is
reversed compared to that found for the short rains (e.g.,
Camberlin 1995; Indeje et al. 2000; Ogallo 1988; Phillips
and McIntyre 2000). To study the ENSO/IOD-rainfall associ-
ation at seasonal scale over Uganda, a correlation analysis is
applied using SST indices NINO1.2, NINO3.4, and IOD
known to present a significant correlation with East African
rainfall. Next, we have quantified the significance of the cor-
relation (t test) between seasonal rainfall and SST indices as a
means to understand which index relates more with Ugandan
rainfall. Results are shown in Fig. 7, where the seasonal cor-
relation coefficients between SST indices and rainfall for the
period 1990–2008 are shown for GPCC, CHIRPS, CRU,
ERA-Interim, RCMs, and the ensemble mean.

It can be seen that GPCC is significantly correlated with the
three SST indices, although not for the whole year. From the
end of the short rains to the onset of the dry season, the cor-
relation coefficients are significant, with a better relationship
from November to January, with all indices but more specif-
ically with NINO1.2 and IOD. This means that during El Niño
(La Niña) as well as positive IOD (negative IOD) phases,
more (less) rainfall is received in the short rains season and
also in the dry season. Inversely, the sign of correlation tends
to reverse from March to April (similar to a study by
Camberlin and Philippon 2002 for the ENSO indices), but
the relationship is not significant. In May, the correlation with
NINO3.4 is again positive and significant, but the correlation
is decreasing during the following months and becomes sig-
nificantly negative in August and September, i.e., the transi-
tion period between the long rains and short rains seasons.
This period coincides with the annual peak of rainfall over
the northern part of the country. As a consequence, La Niña
(El Niño) favors rainfall over the north (south) region in
August–September (November–January), which is coherent
with previous studies (e.g., Phillips and McIntyre 2000).
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In general, it can be observed that correlations with
NINO1.2 and IOD are higher than those with NINO3.4, but,
in all cases, the relationship is not stable through the year. This
implies that there is a strong inter- and intraseasonal variation
of the signature of NINO1.2, NINO3.4, and IOD indices in the
rainfall over Uganda. The other observational datasets also
follow the same temporal pattern, but ERA-Interim poorly
reproduces the seasonal signature of ENSO, with a too
smoothed pattern. For instance, rainfall in ERA-Interim shows
a negative correlation with NINO3.4 in AMJ, while the coef-
ficient should be positive according to observational datasets
and also the ensemble mean of the ten RCMs. Otherwise, the
seasonal signature of ERA-Interim improves with the IOD
index.

Concerning the RCMs, it is found out that eight RCMs out
of ten (CCCma-CanRCM4, CLMcom-CCLM4-8-17,
CNRM-ALADIN52 , DMI -H IRHAM5 , KNMI -
RACMO22T, MOHC-HadRM3P, SMHI-RCA4, and
UQAM-CRCM5) are generally able to reproduce the pattern
of the seasonal statistical relationship with ENSO and IOD
indices, whereas BCCR-WRF311 and MPI-CSC-
REMO2009 perform poorly. The MPI-CSC-REMO2009
simulation shows correlations with all indices that are gen-
erally too weak and not significant, even if the sign of the
coefficient is in general well reproduced throughout the
year. The BCCR-WRF311 simulation shows too strong
negative correlations with both ENSO indices from
August to November and also from September to
November with IOD, although the correlations slightly im-
prove. This characteristic is especially visible in October
and is associated with a strong wet bias over the southwest-
ern part of the country (see Supplementary material, Fig.
S3) and with an overestimation of the interannual variabil-
ity for this month specifically (see Fig. 5). Finally, it is
worth noting that UQAM-CRCM5 outperforms any indi-
vidual model in its representation of the seasonal signature
of ENSO and IOD with rainfall. The ensemble mean of the
ten RCMs correctly reproduces the statistical links with
both ENSO and IOD indices (Fig. 7).

It is worth noting that IOD is not statistically indepen-
dent of ENSO over the period 1990–2008 considered. To
demonstrate this, we have plotted the ENSO indices over
the Pacific Ocean against the IOD index over the Indian
Ocean (Fig. S5). We further note that the interannual var-
iability of IOD is significantly positively correlated with
NINO1.2 and NINO3.4 from September to January/
February (more strongly with NINO1.2; Table S1).
Indeed, over our study period, most of El Niño phases
co-occurred with positive anomalies of IOD (e.g., 1994–
1995, 1997–1998, 2006–2007), and inversely most La
Niña phases co-occurred with negative anomalies of IOD
(e.g., 1998–1999, 2000–2001, 2005–2006). This feature is
more marked for November and December months.

4 Summary and conclusion

Improving the understanding and predictability of rainfall is of
high importance for Uganda, whose economy is mainly based
on rainfed agriculture and therefore vulnerable to climate
variability and climate change. Phillips and McIntyre (2000)
pointed out that the variation in rainfall patterns from the north
to the south is a key factor that dictates the cropping systems,
including the choice of crop and planting time.

In this study, the CORDEX RCMs have been analyzed for
their ability to capture and characterize present climate (1990–
2008) rainfall patterns over Uganda. Results from ten different
RCMs with horizontal resolution of 0.44°, forced by ERA-
Interim for the period 1989–2008, are compared against three
observational datasets: the Global Precipitation Climatology
Centre (GPCCv7), the University of East Anglia Climatic
Research unit (CRU TS3.10), and the Climate Hazards
Group InfraRed Rainfall (CHIRPS) datasets, as well as
the ERA-Interim reanalysis. Performances of the individu-
al models and the ensemble mean are analyzed both at
annual and seasonal time scales, by using several metrics.
We have also investigated the rainfall response to the
ENSO and IOD signal.

It is found that most models underestimate the annual mean
rainfall over the country. This is particularly the case for MPI-
CSC-REMO2009 and CLMcom-CCLM4-8-17. The quasi-
systematic dry biases, generally found over areas of lower
altitude especially over the west shores of Lake Victoria,
may be associated with moisture outflow in that region.
Indeed, the spatial distribution of annual mean rainfall biases
tends to follow the terrain elevation in the region, a feature that
is satisfactorily reproduced by four models (SMHI-RCA4,
DMI-HIRHAM5, BCCR-WRF331 , and CNRM-
ALADIN52). This has also been noted by Favre et al.
(2016) over South Africa. With regard to seasonality, the
models capture properly the unimodal and bimodal distribu-
tions of the annual cycle over the north and south parts of the
domain, respectively. However, rainfall is underestimated by
most models fromMarch to May (i.e., the main rainy season),
which is the most important rainfall season for the agricultural
activities in Uganda. Notably, CORDEX RCMs have been
found to underestimate March–May seasonal rainfall also
over Southern Africa (e.g., Kalognomou et al. 2013).

Most models tend to underestimate the magnitude of the
interannual variability of rainfall over Uganda, in comparison
with GPCC. Nevertheless, they properly reproduce the rela-
tively stronger variance during the short rains season better
than during the long rains season. The ensemble mean shows
the weakest interannual variability throughout the year, due to
the smoothing effect of the average of the ten RCMs’ results.
On the other hand, there are differences in models’ perfor-
mance in the simulation of the interannual variability of sea-
sonal rainfall over the region. For instance, all models
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(including the ensemble mean) capture the interannual pattern
of the December–February season reasonably well as com-
pared to other seasons. Particularly, it is observed that wetter
conditions during this particular season occur during El Niño
events, an indication that as climate change is expected to
increase the frequency of extreme El Niño events (Cai et al.
2014), the frequency of unusually wet December–February
seasons is also likely to increase in magnitude. In fact, earlier
studies (Nimusiima et al. 2014; Shongwe et al. 2011; Vizy and
Cook 2012) showed that the December–February season has
experienced an increasing trend in rainfall amounts that may
be associated with signals of climate change.

The capability of CORDEX RCMs to capture the sea-
sonal rainfall anomalies related to ENSO and IOD was also
assessed. Uganda rainfall shows seasonally contrasted cor-
relations with ENSO and IOD, and all models except
BCCR-WRF311 and MPI-CSC-REMO2009 are found to
reproduce the pattern of the seasonal signature with both
ENSO and IOD indices. UQAM-CRCM5 generally per-
forms better than the other models and, in some cases,
comparably to the ensemble mean.

Some general concluding remarks can be drawn from this
study:

1. Some models (e.g., CLMCom-CCLM4-8-17 and MPI-
CSC-REMO2009) perform particularly poorly in
representing the rainfall patterns over Uganda. This may
be due to a combination of (a) resolution (which may be
still to coarse to adequately reproduce all the effects relat-
ed to complex topography; for Uganda, this is probably so
in the western part of the country where major relief fea-
tures (e.g., Albertine Rift, Rwenzori ranges) are likely not
fully resolved at the resolution of the CORDEX models)
and (b) physical parameterization, which may play a rel-
evant role. For instance, Dosio and Panitz (2016) showed
that when driven by different GCMs, precipitation trends
simulated by CLMCom-CCLM4-8-17 and the GCMs
show opposite signs, with CCLM showing a significant
reduction in precipitation. This feature, not limited to
CCLM, was revealed for other RCMs and was related to
the different parameterization of, e.g., the hydrological
cycle and, in general, the different response to the soil
moisture/precipitation feedbacks. For example, Breil
et al. (2017) demonstrated the importance of soil
vegetation-atmosphere (SVAT) interaction for a more re-
alistic spatial rainfall distribution in the Central Sahel.
Therefore, more work is necessary to fully understand
the mechanisms governing precipitation over (or part of)
Africa (e.g., land-atmosphere interaction) and how
models simulate them.

2. RCMs are generally able to well reproduce the influence
of large-scale climatic modes such as ENSO and IOD, but
some of them present difficulties concerning regional and

local processes influencing precipitation such as the
ITCZ, orographic forcing, and land-lake breezes, yet these
are key drivers for Ugandan rainfall. Studies by Anyah
et al. (2006), Thiery et al. (2015), and Williams et al.
(2015) underlined the part played by the East African
lakes in general and Lake Victoria in particular in the
regional climate conditions. For Uganda, there is actually
a wide range between the RCMs in the rainfall amounts
they simulate over Lake Victoria and along its shores.

3. Although there are some intermodel differences, the en-
semble mean simulates the rainfall adequately with a mi-
nor or major improvement (depending on the rainfall sea-
son considered) upon the driving model (ERA-Interim)
and can therefore be useful for the assessment of future
climate projections for the region.

4. Lastly, it must be noted that evaluating RCMs when driv-
en by ERA-Interim only gives a flavor of how good they
are when driven by Bperfect^ boundary conditions.
However, for climate change simulations, RCMs will be
driven by GCMs, which will add their own biases on top
of those of the RCMs. Therefore, performing analysis of
the evaluation of the RCMs driven by GCMs is essential
in order to assess whether RCMs are able to add value to
the driving GCMs.
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