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A B S T R A C T   

Forecasts on sub-seasonal to seasonal (S2S) timescales have huge potential to aid preparedness and disaster risk 
reduction planning decisions in a variety of sectors. However, realising this potential depends on the provision of 
reliable information that can be appropriately applied in the decision-making context of users. This study describes 
the African SWIFT (Science for Weather Information and Forecasting Techniques) forecasting testbed which brings 
together researchers, forecast producers and users from a range of African and UK institutions. The forecasting 
testbed is piloting the provision of real-time, bespoke S2S forecast products to decision-makers in Africa. Drawing on 
data from the kick-off workshop and initial case study examples, this study critically reflects on the co-production 
process. Specifically, having direct access to real-time data has allowed user-guided iterations to the spatial scale, 
timing, visualisation and communication of forecast products to make them more actionable for users. Some key 
lessons for effective co-production are emerging. First, it is critical to ensure there is sufficient resource to support 
co-production, especially in the early co-exploration of needs. Second, all the groups in the co-production process 
require capacity building to effectively work in new knowledge systems. Third, evaluation should be ongoing and 
combine meteorological verification with decision-makers feedback. Ensuring the sustainability of project-initiated 
services within the testbed hinges on integrating the knowledge-exchanges between individuals in the co-production 
process into shaping sustainable pathways for improved operational S2S forecasting within African institutions.  
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Practical implications  

Reliable and useful sub-seasonal to seasonal (S2S; 2–4 weeks) 
forecasts have huge potential to increase people’s resilience to 
weather-related extremes. Understanding what drives changes in 
weather on these timescales and how well forecast models are able 
to capture them is an active area of research. However, applying 
forecasts on these timescales to decision-making contexts, partic-
ularly across the African continent, remains in its infancy. There is 
increasing evidence that effectively implementing such forecasts 
requires a collaboration across a range of disciplines and stake-
holders, through a process known as co-production. Co-produc-
tion brings together different knowledge sources, experiences and 
working practices from different disciplines and sectors to jointly 
develop new and combined knowledge for addressing societal 
problems of shared concern and interest. 

This study describes an S2S operational forecasting ‘testbed’ 
which forms part of the African SWIFT (Science for Weather In-
formation and Forecasting Techniques) project. This S2S testbed is 
a two-year forum that brings together researchers, forecast pro-
ducers and users from African and UK institutions, to participate 
in a co-production process using real-time forecasts from state-of- 
the-art forecasting models. Operational groups from across East 
and West Africa are working closely together to co-produce new, 
user-driven S2S forecast products to aid decision-making in sec-
tors such as agriculture, food security, energy and disaster risk 
reduction. In this operational testbed, pilot products are continu-
ally being used, iterated and evaluated in real time to improve 
their practical application for decision-making. Specifically, ex-
amples of user-guided iterations to the spatial scale, timing, vis-
ualisation and communication of forecast information have been 
shown to make products more actionable. For example, in many 
instances annotating spatial maps by adding county boundaries or 
the location of large cities was enough to improve interpretation 
without inappropriately representing the data. 

In order to ensure the sustainability of project-initiated opera-
tional services it is crucial to critically reflect and evaluate both 
the new forecast products and the co-production process itself. 
Some initial, and crucial, lessons are emerging from the S2S test-
bed: i) it is critical that there is sufficient resource to support the 
co-production process, especially in the co-exploration of user 
needs; ii) all testbed participants require capacity building to 
enable effective co-production since it requires most working 
outside their existing knowledge and working practices; iii) 
developing evaluation systems which combine measures of fore-
cast quality with decision-makers insight is critical to the useful 
application of new products. Crucially, the African SWIFT project 
is supporting the systematic assessment of the meteorological skill 
of the S2S models which is key if they will be used to activate 
preparedness action in resource-constrained environments. 

To continue to build upon the success of the S2S testbed so far, 
individual knowledge gained through scientific research and user- 
engagement needs to be integrated into institutional knowledge 
within operational forecasting procedures. A key aspect of this is 
building the cross-institutional partnerships between national 
meteorological services and in-country research institutions. 
Doing so will create sustainable pathways to continue the co- 
production of S2S operational products within the African in-
stitutions involved. Documenting and evidencing the new forecast 
products produced and lessons learnt through the co-production 
process will support the generation of new forecast products in 
other regions and institutions. 

During the preliminary stages of the testbed it has become evident 
that co-production is crucial for developing effective, user-focused 
S2S forecast products, which can play a vital role in improving 
resilience to weather-related extremes. However, it is important to 
note that the generation of these products crucially requires 
continued access to real-time data from the World Meteorological 

Organisation S2S project, and that sustainable co-production re-
quires continued resource allocation from within each institution 
to acknowledge and support the project-initiated, decision-led 
services.   

Introduction 

Forecasts on sub-seasonal to seasonal (S2S) timescales (from 2 to 4 
weeks) bridge the gap between short-range weather forecasts (hours to 
days) and longer-term seasonal outlooks (Brunet et al., 2010, Vitart 
et al., 2012, Robertson et al., 2014). The provision of reliable S2S 
forecast information has huge potential to support planning decisions 
and, through early warning, allow for proactive disaster mitigation and 
preparedness (Coughlan de Perez et al., 2016, White et al., 2017). As 
such, increasing the appropriate use of forecast information on S2S 
timescales, provided it can be reliable and useful (Jones et al., 2015), has 
the potential to increase people’s resilience to weather extremes and 
have a transformative impact on livelihoods (Williams et al., 2015, 
Nkiaka et al., 2019). However, there is increased recognition that doing 
this effectively requires iterative collaboration across a range of disci-
plines and stakeholders (Cash et al., 2003, Vaughan and Dessai, 2014) 
through a process known as co-production (Bremer and Meisch, 2017, 
Vincent et al., 2018, Visman et al., 2018). Variously defined (e.g., 
Bremer and Meisch, 2017, Vincent et al., 2018), co-production of 
weather and climate services can be considered as the process of 
combining knowledge from different actors to jointly develop new 
products and services addressing issues of shared concern (Visman et al., 
2018). As such, it transforms the role of the user from recipient of in-
formation to participant in the knowledge generation process (Vincent 
et al., 2020). By shifting the focus of forecast development from pro-
ducers to jointly developing knowledge in the decision-making contexts 
of users (Vaughan and Dessai, 2014, Vincent et al., 2020), co-production 
provides an opportunity to improve the application of S2S forecasts. Co- 
production also facilitates the sharing of knowledge between meteoro-
logical and climate institutions within-country, within-region and 
internationally. 

Despite its huge potential to improve action-based forecasting, 
making predictions on S2S timescales is challenging because it is suffi-
ciently long that the impact of the initial conditions has significantly 
reduced; but sufficiently short that slowly varying modes, such as 
oceanic circulations, are only just starting to influence the forecast 
(Fig. 1; Vitart et al., 2012). There are, however, some phenomena and 
processes in the atmosphere, ocean and land surface which vary on S2S 
timescales and provide crucial sources of forecast predictability (Vitart 
et al., 2015). Some of those most relevant for the African continent are 
the Madden-Julian Oscillation (MJO; Zaitchik, 2017, Sossa et al., 2017, 
Kim et al., 2018), which is the major mode of sub-seasonal variability in 
the tropics, sea surface temperatures (SST) associated with coupled 
seasonal phenomena such as the El Niño Southern Oscillation (ENSO; 
Hudson et al., 2011, Olaniyan et al., 2019) and the Indian Ocean Dipole 
(IOD; Hirons and Turner, 2018), as well as land surface conditions such 
as the influence of slowly-varying soil moisture anomalies (Douville 
et al., 2001, Koster et al., 2011). 

Producing accurate sub-seasonal forecasts relies on having a model 
which can capture the sources or drivers of sub-seasonal predictability 
(e.g., MJO; Zaitchik, 2017); as well as the response of local weather to 
such a driver (e.g., modulation of local precipitation by MJO; Berhane 
and Zaitchik, 2014). For many of the drivers outlined above, and 
particularly over Africa, much of this scientific understanding is in its 
infancy and the forefront of current knowledge (White et al., 2017, 
MacLeod and Palmer, 2018, Vigaud and Giannini, 2019, Moron and 
Robertson, 2020, de Andrade et al., 2021, Endris et al., 2021). 

While having a model that is able to capture the drivers of sub- 
seasonal variability and their local weather response can provide 
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reliable information, this is not sufficient to develop effective weather 
and climate services on S2S timescales (Cash et al., 2006, Dilling and 
Lemos, 2011, Lemos et al., 2012). In order to improve early warning 
systems, reduce weather-related vulnerability and build more resilient 
livelihoods (Williams et al., 2015, Nkiaka et al., 2019), forecast 
knowledge and products also need to be useful and actionable in the 
decision-making contexts of users (Dilling and Lemos, 2011, Lemos 
et al., 2012). The assessment of forecast skill not only requires a tech-
nical and scientific review of forecasts against observations (Murphy, 
1993), but also an understanding of users’ perceptions of forecast ac-
curacy at the geographic and temporal scale relevant for a particular 
decision-making process. Co-production supports this shift towards 
jointly developing new decision-relevant weather and climate knowl-
edge (Bremer and Meisch, 2017, Vincent et al., 2018, Visman et al., 
2018, Bremer et al., 2019, Carter et al., 2019). 

However, co-production is not merely a consultation with interested 
stakeholder groups to find an application of existing science or, in this 
case, forecast information. Rather, done appropriately, it demands a 
new and potentially uncomfortable approach to knowledge creation. Co- 
production shifts away from a ‘one-way’ supply of scientific information 
towards a ‘two-way’ demand-led iterative process (Kirchhoff et al., 
2013, Vincent et al., 2018), with an improved collaborative partnership 
between producers and users (Vaughan and Dessai, 2014). 

Historically, the link between developments in meteorological un-
derstanding and forecasting and their ‘pull through’ to effective opera-
tional forecast products has been weak (Dilling and Lemos, 2011, Lemos 
et al., 2012). S2S forecasting, in particular, is in its infancy on the Af-
rican continent with many National Meteorological and Hydrological 
Services (NMHSs) currently producing limited forecasting information 
on these timescales (White et al., 2017). However, by directly working 
with specific users in the co-production of weather and climate services, 
a wide range of international, regional and national initiatives, the GCRF 
(Global Challenges Research Fund) African Science for Weather Infor-
mation and Forecasting Techniques (SWIFT) project, are seeking to 
address these imbalances in access and usability (Hewitt et al., 2012, 
Dinku et al., 2018, Nkiaka et al., 2019). 

Drawing on data from the kick-off workshop and initial activities of a 
sub-seasonal forecasting testbed – a forum where prototype forecast 
products are co-produced and operationally trialled in real-time – this 
study considers: a) how co-production can influence the use of S2S 

information in operational forecasting; (b) what key challenges there are 
in making the co-production of project-initiated S2S forecast products 
sustainable; and (c) what lessons have been learnt so far about how co- 
production can increase the appropriate use of S2S forecast information, 
and how they can inform future collaborative efforts. 

Given the lack of S2S forecast information currently being used 
operationally in Africa, and the huge potential of reliable S2S informa-
tion on action-based forecasting (White et al., 2017), answering these 
key questions is crucial to advancing this rapidly developing area of 
research and meteorological application. This study, and the ongoing 
African SWIFT S2S testbed, will form a basis of evidence that the co- 
production of sub-seasonal forecast products supports potentially ‘use-
ful’ S2S information to become ‘usable’ and ‘used’ by forecast users 
(Boaz and Hayden, 2002; Lemos et al., 2012). 

The data and methodology section outlines details from the kick-off 
workshop and testbed case studies. The results and discussion section 
draws on insights from this data to answer the first two research ques-
tions. Finally, the lessons learnt through this co-production process are 
drawn together as the main conclusions of the study. 

Data and methodology 

Sub-seasonal to seasonal (S2S) data 

The GCRF African SWIFT project has been granted real-time access to 
the Subseasonal to Seasonal (S2S) Prediction project (Vitart et al., 2017) 
forecast data for a period of two years starting in November 2019. The 
S2S Prediction project is a World Meteorlogical Organization project to 
promote research into sub-seasonal prediction and prediction systems 
and increase the uptake of sub-seasonal forecasts in user decision 
making. As part of this project it has produced a database of operational 
sub-seasonal predictions available with a 3 week lag for research pur-
pose. To demonstrate the social and economic value of S2S forecasts the 
second phase of the S2S Prediction Project (World Meteorological Or-
ganization, 2018) includes a time-limited (2 year) Real-time Pilot 
Project which provides real-time access to forecasts in the S2S Project 
database to enable feedback on the value of these forecasts in a real-time 
decision-making context, including aspects such as the timing and 
communication of the forecasts. African SWIFT is one of 16 projects 
taking part in this S2S Real Time Pilot Initiative. 

Fig. 1. Schematic showing the sources of predictability and decision-making applications across timescales from weather forecasting (blue) to climate projections 
(orange). Subseasonal to seasonal (S2S) timescale shown in grey. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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The African SWIFT S2S testbed is using real-time forecast data from 
the operational configuration of the ECMWF model at 1.5◦ resolution 
(Table 1). Following user feedback, weekly forecast initialisations are 
downloaded on Mondays with the data available on Tuesdays for 
product development. Model forecasts can have systematic biases which 
need to be considered when interpreting the forecast. These biases can 
be estimated by creating a set of “re-forecasts” or “hindcasts” of previous 
years and comparing them to an observed climatology. The hindcasts 
can then be used to provide a good estimate of the bias in the real-time 
forecast. Consistent with the operational procedure at ECMWF, the three 
closest hindcast initialisation dates are used to compute the climatology 
and subsequent anomalies for the forecasted variables. This gives a 
larger, more statistically robust ensemble size of 33 for each hindcast 
year. 

Co-production approach 

The approach being followed during the African SWIFT S2S fore-
casting testbed is based on the guiding processes and principles outlined 
in the 2019 Manual: Co-production in African weather and climate 
services (Carter et al., 2019). Informed by key literature and operational 
best practice (Vincent et al., 2018; Bremer et al., 2019; Visman et al., 
2018), this manual drew together emerging experiences from across 
regions, sectors and livelihood groups to identify emerging consensus 
about the process and principles that have proved effective in enabling 
co-production of climate services to support specific decision-making 
contexts. Specifically, all the activities within the testbed have been 
and will continue to be guided by the ten principles identified as un-
derpinning effective co-production: improve transparency of forecast 
accuracy and certainty; tailor to context and decision; deliver timely and 
sustainable service; build trust; embrace diversity and respect differ-
ences; enhance inclusivity; keep flexible; support conscious facilitation; 
communicate in accessible ways; and ensure value-add for all involved. 

Furthermore, in order to develop reliable and actionable tools for 
decision-making on sub-seasonal timescales, activities in the S2S fore-
casting testbed will be structured around the six building blocks of co- 
production (Carter et al., 2019). A brief description of the six building 
blocks are provided below: 

B1. Identify key actors and build partnerships 
In order to form an effective basis for co-production, it is essential to 

develop equitable, trust-based relationships. 
B2. Build common ground 
Develop a shared understanding, across actors, of the intention and 

desired outcomes of the co-production process. Consider competing 
priorities, managing expectations and capacity development. 

B3. Co-exploring needs 
Cementing the relationships and understanding between actors. 

Creating a space where jointly defined issues can emerge. 
B4. Co-developing solutions 
Solutions to the identified issues are developed through collaborative 

knowledge exchanges with contributions from a variety of expertise 
from across the actors. 

B5. Co-delivering solutions 
Requires agreement about how to communicate the collaborative 

outputs to ensure they are accessible; that cultural considerations have 
been taken into account; and that all contributors are appropriately 
acknowledged. 

B6. Evaluate 
Importance of scheduling regular time for reflection and monitoring. 

Additionally, each co-production building block should be evaluative to 
enable regular review, ongoing feedback and highlight lessons learnt. 

These building blocks have been numbered here for clarity but, by 
design, should not be limited to occurring sequentially in this order. For 
example, as stated in B6, each co-production building block should have 
an evaluative element. Furthermore, the entire co-production process is 
iterative so many, if not all, of the blocks will occur more than once. 

S2S forecasting testbed: structure, kick-off workshop and case studies 

African SWIFT is using a two-year forecasting testbed as the context 
for co-producing new forecast information on S2S timescales. The S2S 
testbed is made up of representatives from the African SWIFT partner 
organisations and can be thought of as having 6 “O”perational groups 
(O1-O6; Table 2). These are comprised of pan-African (ACMAD1; Niger) 
and regional (ICPAC2; Kenya) climate centres, as well as the NMHSs and 
partner Universities in the four partner countries: Ghana (GMet, 
KNUST)3, Kenya (KMD, UoN) 4, Nigeria (NiMet, FUTA)5 and Senegal 
(ANACIM, UCAD)6. Activities are also supported by the African SWIFT 
UK organisations (NCAS, UKCEH, UoR and UoL) 7. By supporting 
operational forecasts through national and international collaborations, 
and specifically between NMHSs, universities and users in partnering 
countries, the African SWIFT testbed is aiming to foster the collaborative 
partnerships required for successful co-production (Vaughen and Dessai, 
2014). 

Kick-off workshop 
A kick-off workshop for the forecasting testbed was held at the ICPAC 

headquarters in Ngong, Kenya. The intense, week-long workshop was 
held in November 2019 to coincide with the start of two years of access 
to real-time S2S forecast data. The workshop brought together forecast 
users (10), operational forecast producers (11) and researchers (7) from 
7 African countries (Cameroon, Ghana, Kenya, Nigeria, Niger, Senegal 
and Uganda) across the 6 operational groups in Table 2, as well as re-
searchers (10) from the UK, totalling 38 attendees. The forecast users 
represented the agriculture, food security, energy and disaster risk 
management sectors. All these sectors are recognised in the GFCS as 
having huge potential to benefit from improved S2S forecast products in 
their decision-making. See Tables S1 and S2 in supplementary material 
for details of kick-off workshop participants and affiliations. Following 
the kick-off workshop regular testbed-wide and operational group vir-
tual interactions have continued between forecast users (8), operational 
forecast producers (14) and researchers (16). 

Data is drawn from the kick-off (KO) workshop and initial activities 
described here. Details of each activity are given below, including the 
main corresponding co-production building block. Activities are 
labelled and referred to as KO1-KO8 for clarity of discussion in the re-
sults section. 

KO1: Pre-kick-off workshop user questionnaires were distributed 
to the six identified key users from each operational group (Table 2; see 
S3 in supplementary material) to identify how S2S information could 
potentially influence decision-making in their sector and specific 
decision-making context (B1, B2). 

KO2: A setting expectations discussion group aimed at co- 
exploring how forecast users (10), forecast producers (11) and re-
searchers (17) viewed their own and others’ roles in the co-production 
process (B2). Individuals were asked to articulate their own expecta-
tions of the co-production process within an operational forecasting 
testbed, as well as reflect on the potential expectations of other actors in 
the process. 

1 ACMAD: African Centre of Meteorological Applications for Development. 
2 ICPAC: Intergovernmental Authority on Development (IGAD) Climate Pre-

diction & Applications Centre.  
3 GMet: Ghana Meteorology Agency; KNUST: Kwame Nkrumah University of 

Science and Technology.  
4 KMD: Kenya Meteorological Department; UoN: University of Nairobi.  
5 NiMet: Nigeria Meteorology Agency; FUTA: The Federal University of 

Technology Akure. 
6 ANACIM: National Agency of Civil Aviation and Meteorology; UCAD: Uni-

versité Cheikh Anta Diop de Dakar.  
7 NCAS: National Centre of Atmospheric Science; UKCEH: UK Centre of 

Ecology and Hydrology; UoR: University of Reading; UoL: University of Leeds. 
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KO3: 4 sector-themed discussion groups for Agriculture (4 users, 3 
producers, 3 researchers), Food Security (1 user, 2 producers, 6 re-
searchers), Energy (2 users, 2 producers, 4 researchers) and Disaster 
Risk Reduction (4 users, 3 producers, 4 researchers) to co-explore sector 
specific S2S needs (B3). These groups also discussed misunderstood 
terminology which they had encountered (B2). 

KO4: Timelines of decision-making were developed within each 
operational group to co-explore the annual context into which S2S in-
formation would be added. These outlined the timing of dry and wet 
seasons, important sector activities, key user decisions, and current 
available forecast information (B3; see S4 in supplementary material for 
an example). 

KO5: Country-level network maps were produced within the 
SWIFT partner countries of Kenya, Ghana and Nigeria to co-explore the 
organisational governance context into which S2S information would be 
communicated (B5; see S5 in supplementary material for an example). 

KO6: Bi-annual questionnaires are distributed to forecast pro-
ducers and forecast users from each of the six operational groups. The 
forecast producer questionnaire aims to understand if and how the new 
testbed products are being incorporated into operational procedure, as 
well as capture how they have been iterated based on user feedback (see 
S6 in supplementary material. The forecast user questionnaire aims to 
understand how the new testbed products are being used in the decision- 
making context they were designed for (see S7 in supplementary ma-
terial). Results will be reported from the first round of responses (B6). 

KO7: Operational co-production action plans were developed 
within each operational group to serve as a memorandum of under-
standing formalising the relationships for continued co-production 
during the two-year testbed. These are based around the iterative co- 
production building blocks (B1-B6), and include formalising the re-
sponsibility within the process for maintaining collaboration for product 
development, communication, and evaluation (see S8 in supplementary 
material for an example). 

KO8: Extensive notetaking by the testbed facilitating team 
throughout the week’s activities, including making observations of the 
co-production process and having informal discussions with participants 
(B6). 

Case studies 
As well as drawing on data from the kick-off workshop, results from 

two case studies are used to support the findings of this study (B4). Case 
study one is between a pan-Africa climate information producing insti-
tution (ACMAD) and a central Africa regional climate centre (CAPC-AC; 
O1, Table 2), hereafter referred to as “CS: CAfrClim”. Case study two is 
between a national meteorological service (KMD) and a range of sub- 
state urban flood risk decision-makers (O4; Table 2), hereafter 
referred to as “CS: KenFloodRisk”. These case studies are named after 
their user application and have been purposely chosen to represent the 
diverse collaborative partnerships that exist in the forecasting testbed. 
The pre-testbed status quo and co-developed solutions for each case 
study are described below: 

Case study 1: CS: CAfrClim 
Pre-testbed status quo: Forecasters at CAPC-AC provide sub-seasonal 

forecasts to support NMHSs for the Economic Community of the Cen-
tral African States (ECCAS) which comprises of eleven nations including 
Angola, Burundi, Cameroon, Central African Republic, Chad, Demo-
cratic Republic of Congo, Republic of the Congo, Equatorial Guinea, 
Gabon, Rwanda, and Sao Tomé and Principe. Current forecast products 
used at CAPC-AC include sub-seasonal predictions from National Cen-
ters for Environmental Prediction (NCEP) Climate Forecast System (CFS) 
version 2 (Saha et al., 2010) and National Oceanic and Atmospheric 
Administration (NOAA) Subseasonal Experiment (SubX) project (Pegion 
et al., 2019). Alongside predicted precipitation totals, diagnostics used 
to inform forecasters include precipitable water, outgoing longwave 
radiation, tropospheric wind shear, and MJO (Zaitchik, 2017) charac-
teristics. The combination of all of these diagnostics from different 
modelling centres are used to produce a forecast of precipitation 
anomalies (Fig. 2). These anomalies are classified into five categories 
and combined with the likelihood of the precipitation anomaly occur-
ring. Colours and numbers are used to highlight regions of substantial 
precipitation anomalies. Currently, producing Fig. 2 requires a high 
level of scientific expertise to subjectively combine different information 
sources. 

Co-developed solution: Within the testbed, a collaborative co- 
production partnership has been formed between researchers at 

Table 1 
Table of specifications for the ECMWF S2S real-time data.  

Forecast length 
[days] 

Model Horizontal 
resolution 

S2S Database 
Resolution 

Forecast ensemble 
size 

Frequency Hindcast length Hindcast ensemble 
size 

0–46 ≤day 15 16 km 
>day 15 
32 km  

1.5◦ 51 Bi-Weekly - every Monday and 
Thursday 

20 years 
(2000–2019) 

11  

Table 2 
Table of the 6 “O”perational groups (O1-O6).   

O1 O2 O3 O4 O5 O6 

Operational partner ACMAD ICPAC GMet KMD NiMet ANACIM 
Location; Type Niger; pan-Africa Kenya; regional Ghana; NMHS Kenya; NMHS Nigeria; NMHS Senegal; NMHS 
Supporting University – – KNUST1 UoN2 FUTA3 UCAD4 

Key user organisation CAPC-AC5 FSNWG6 MoFA7 KenGen8 IFAD9 MWG10 

Key user sector Disaster risk reduction Food security Agriculture Energy Agriculture Agriculture  

1 KNUST: Kwame Nkrumah University of Science and Technology. 
2 UoN: University of Nairobi. 
3 FUTA: The Federal University of Technology, Akure. 
4 UCAD: Université Cheikh Anta Diop de Dakar. 
5 CAPC-AC: Centre d’Application et de Prévision Climatologique de l’Afrique Centrale. 
6 FSNWG: Food Security and Nutrition Working Group. 
7 MoFA: Ministry of Food and Agriculture. 
8 KenGen: Kenya Electricity Generating Company PLC. 
9 IFAD: International Fund for Agricultural Development. 
10 MWG: Multi-disciplinary working group. 
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UKCEH and NCAS and forecast producers at ACMAD and CAPC-AC to 
jointly identify how access to real-time sub-seasonal forecast data can 
contribute to their weather and climate services. An additional, objec-
tive bulletin of extreme precipitation events has been added using the 
ECMWF 51-member probabilistic forecast. To produce this product, the 
number of ensemble members with a weekly-accumulated precipitation 
anomaly within specified thresholds are counted. Figs. 3 and 4 show the 
iterative versions of the probability of weekly-accumulated precipitation 
anomalies in each threshold. 

Case study 2: CS: KenFloodRisk 
Pre-testbed status quo: Prior to the S2S forecasting testbed, partici-

pants from the ForPAc project, in collaboration with KMD, conducted a 
stakeholder workshop in Nairobi County to identify the format of sub- 
seasonal forecast products that users find most useful for their 
decision-making contexts. The one-day workshop had 18 in attendance; 
16 (13 forecast users and 3 forecast producers) participants and 2 fa-
cilitators. The focus of the stakeholder workshop was flood risk forecasts 
for Nairobi county with users drawn from the Nairobi city county gov-
ernment sectors (Disaster risk management & coordination; roads, 
transport & infrastructure), humanitarian sector (Kenya Red cross Nai-
robi branch), the media and community leaders from an informal 

settlement within Nairobi county. As part of the workshop, participants 
were shown the same sub-seasonal forecast information presented in 
five different forms (A: graphical maps, B: text bulletin, C: line graph, D: 
bar and whisker plot; E: Fig. 5(a)) and asked to rank them according to 
their level of usefulness (see S9 in supplementary material). The most 
useful product identified from this stakeholder workshop was spatial 
maps of weekly precipitation (Figure A in S9), which are already being 
routinely produced. Fig. 5 (a) shows the forecast product ranked second 
most useful by the workshop participants. It shows the expected weekly 
total rainfall from historical climatological data (light blue), the 
observed (dark blue) and forecast (red) weekly rainfall totals, including 
an indication of the forecast uncertainty (grey line). 

Co-developed solution: Fig. 5 (b) – (d) show the iterative versions of 
expected weekly rainfall totals compared with observations for Nairobi 
(36.5◦E, 1.5◦S). Fig. 5 (b) shows forecasted weekly (Sat-Fri) rainfall from 
4th April – 1st May 2020, initialised on 30th March (red), the hindcast 
ensemble average weekly rainfall climatology for the past 20 years 
(orange) and the forecast uncertainty (0th – 100th percentile within all 
forecast ensemble members; grey lines). Fig. 5 (c) incorporates TAMSAT 
(Tropical Applications of Meteorology using SATellite data and ground- 
based observations) satellite rainfall observations (Tarnavsky et al., 
2014, Maidment et al., 2014) in the form of the historical climatology 

Fig. 2. CAPC-AC sub-seasonal early warning information based on precipitation forecast for week commencing 26th March 2020, issued on 19th March 2020 (7-day 
lead time). Weekly precipitation forecasts are given in mm/day. Colours indicate the level of risk based on the risk matrix of Impact (rainfall thresholds) versus 
probability (expert judgement). Numbers from 1 to 10 indicate the probability associated with each threshold. Red indicates very high risk of well below normal 
precipitation (e.g., loss of life and animals, food and water shortages); orange indicates high risk of below to well below normal precipitation (e.g., increase risk of 
disease, air pollution and locusts); yellow indicates low risk of below normal precipitation (e.g., reduced dam water levels, increased tensions in the population); grey 
indicates normal precipitation; green indicates above normal precipitation (e.g., economic losses, migration of people and animals); and dark green indicates a very 
high risk of well above normal precipitation (e.g., flooding & landslides, loss of life and animals, increase risk of disease). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 3. Initial attempt of new forecast product displaying probabilities of anomalous weekly-accumulated precipitation in 51 ECMWF ensemble members. The 
forecast product, initialised on 16th March 2020, shows probabilities on weekly-accumulated anomalous precipitation during weeks (left to right): 23–03-2020 to 
30–03-2020 (7-day lead); 30–03-2020 to 06–04-2020 (14-day lead); and 06–04-2020 to 13–04-2020 (21-day lead). 

Fig. 4. Current version of forecast product displaying probabilities of anomalous weekly-accumulated precipitation in 51 ECMWF ensemble members. The forecast 
product, initialised on 16th March 2020, shows probabilities on weekly-accumulated anomalous precipitation during weeks (left to right): 23–03-2020 to 30–03- 
2020 (7-day lead); 30–03-2020 to 06–04-2020 (14-day lead); and 06–04-2020 to 13–04-2020 (21-day lead). Grey shading denotes land regions with a zero prob-
ability of extreme precipitation events. 
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(2000–2019; light blue) and current years observations (dark blue). In 
Fig. 5 (d) a multiplicative scaling method has been applied to bias cor-
rect the forecast (red), it divides the observed climatology by the model 
hindcast climatology and multiplies the forecast by the result (Sperna 
Weiland et al., 2010, Watanabe et al., 2012). 

Results and discussion 

Co-producing sub-seasonal forecast products with forecast users, 
forecast producers and researchers is an ongoing iterative process. It is 
time-consuming and involves many actors working in a way or context 
which is (potentially) novel to them. Whilst the forecasting testbed is 
ongoing, this section draws on data collected from the kick-off work-
shop, insights from extensive notetaking of the co-production process 
itself and case study examples to answer the first two research questions. 
The third question on lessons learnt from the co-production process will 
be addressed in the conclusions. 

Co-production within an S2S context 

(a) How co-production can influence the use of S2S information in 
operational forecasting 

Co-production has the potential to increase the use and uptake of S2S 
information in operational forecasting. An emerging theme from the 
pre-kick-off forecast user questionnaires was the desire for improved 
sub-seasonal forecast information on dry and wet spells within a rainy 
season. Specifically, having access to such forecast information could 
influence the “timing of planting, crop choices and varieties” as well as 
“prevent wastage” in the agriculture sector (O3, O5, O6). In the energy 
sector S2S information on dry and wet spells has potential to allow for 
“appropriate scheduling of our [power] generation from the hydropower 

plants” (O4). While the disaster risk reduction and food security sectors 
highlighted its potential for improving longer-term strategic planning 
(O1, O2; KO1). This supports the notion that improved access to S2S 
weather information has huge potential to improve early warning sys-
tems, reduce weather-related vulnerability and build more resilient 
livelihoods (Williams et al., 2015; Fig. 1). However, to realise this po-
tential, it is recognised that forecast products have to be both reliable and 
actionable (White et al., 2017) in the decision-making context of users 
(Dilling and Lemos, 2011, Lemos et al., 2012). 

For a forecast to be reliable it needs to exhibit meteorological skill. 
Researchers in the testbed have conducted a thorough assessment of the 
pan-African skill of S2S models (de Andrade et al., 2021, Endris et al., 
2021) and shown that the ECMWF forecast system has the highest skill 
in predicting precipitation in weeks 1–2. While skill was lower for weeks 
3 and 4, probabilistic forecasts were shown to have reasonable skill in 
wet regions during particular rainy seasons (e.g., East Africa; March - 
May rains). Furthermore, a reduction in forecast quality was observed 
when the influence of large-scale drivers such as the MJO, Indian Ocean 
Dipole (IOD) and El Niño Southern Oscillation (ENSO) were removed 
(de Andrade et al., 2021). Therefore, we know that there is predictability 
in the ECMWF forecasting system at these timescales, but the fact that 
the skill can be dependent on the model (Endris et al., 2021), driven by 
the large-scale environment, and not geographically or temporally 
uniform (de Andrade et al., 2021), provides a significant meteorological 
communication challenge. Particularly because users highlighted terms 
such as “large-scale driver”, “probabilistic” and “predictability” as all 
requiring further explanation. To address this forecast producers moved 
away from terms like “predictability” and “large-scale drivers” and 
instead talked about their confidence in the forecast (KO3). Effectively 
communicating probabilistic forecasts, which still have reasonable skill 
out to week 3 and 4 in some regions, remains an ongoing challenge. 

Fig. 5. The four major iterations in the development process for Nairobi weekly rainfall: from the initial user-guided KMD concept (a); the first production of a 
weekly forecast bar chart (b); the amalgamation of the forecast, hindcast and observation data (c); and the latest iteration which includes the bias corrected weekly 
forecast and observation data (d). Iterations (b), (c) and (d) are all for the Nairobi 1.5◦ grid box (centred at 36.5◦E 1.5◦S), with weekly ECMWF sub-seasonal forecasts 
initialised 30th March 2020, with a 5 day lead, valid from Saturday 4th April to Friday 1st May 2020. 
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Specifically, more research is required to understand the implications 
that times and regions of lower forecast skill have on the co-production 
process and products. 

Communicating the technical information in the forecast is not the 
only challenge, the source or legitimacy of the information was also 
deemed crucial for it to be reliable from a user’s perspective. Users 
rightfully challenging “can I trust it?” and “is it better than what I already 
know? when receiving new forecast products (KO3, KO8). As a project 
piloting the use of real-time sub-seasonal information in operational 
forecasting these are very legitimate questions which will take careful 
monitoring, evaluation and learning (see Key challenges section) and 
can be more thoroughly answered in future studies which synthesise the 
forecasting testbed results and experiences over the entire two years. 

For a forecast to be actionable it needs to be relevant to the decision a 
user is trying to make. Drawing on data from the kick-off workshop and 
the co-developed solutions outlined in CS: CAfrClim and CS: Ken-
FloodRisk, there are many examples of user-guided iterations which 
have made testbed forecast products more actionable. Firstly, related to 
the spatial scale of the forecast product. Many users communicated in-
terest to access forecast products on a different spatial scale to those they 
first received (KO3). For example, in CS: CAfrClim there was a request to 
reduce the domain size and focus on the central African nations relevant 
for the users’ decisions (Fig. 3 to Fig. 4). In CS: KenFloodRisk, for rele-
vance to local flood risk forecasting, the request was for a location 
specific forecast for Nairobi city as opposed to an area averaged version. 
To do this the closest model gridbox for Nairobi was chosen for analysis 
(36.5◦E, 1.5◦S; Fig. 5). Feedback from forecast users has also revealed 
that information from new forecast products is used “to further downscale 
the forecast to usable and farmer friendly formats” to improve their 
interpretation (KO6). These requests for scale-related adaptations have 
been implemented, however, it is important to identify the appropriate 
scale for skilful sub-seasonal forecasting and the potential limitations in 
further downscaling the forecast information (Young et al., 2020). In 
many instances annotating spatial maps by adding county boundaries or 
the location of large cities was enough to address these issues without 
inappropriately representing the information (KO8). 

Secondly, a forecast can only be actionable if the product arrives in 
time. The ECMWF data is available on Mondays and Thursdays, with 
download and analysis time factored in this would mean forecast 
products becoming available on Tuesdays or Fridays. Following 
consultation with the key testbed users (KO3, KO4), it was agreed that 
weekly forecasts, rather than bi-weekly, were sufficient to avoid “in-
formation overload” (KO8), and that Tuesdays would leave more 
‘working days’ to make and implement decisions. Therefore, weekly 
forecast initialisations were continued on Mondays. Subsequent feed-
back from forecast users has reinforced that the forecasts were delivered 
with “perfect timing” for their decision-making purposes (KO6). That 
said, changes can be made in the analysis stage to improve the appro-
priate application in a specific context. For example, in CS: CAfrClim the 
analysis of weekly precipitation probabilities were chosen to begin on 
the Monday of each week to enable better integration of the product into 
existing forecasting practices. This is important because it avoids 
confusion and contradiction when users are faced with different forecast 
information from different sources. Further exploring the timing of the 
rainy seasons in different countries and the relevant sector-specific de-
cisions which would need to be made provided a framework for when 
the important parts of the calendar year were in different regions and 
sectors (KO4, KO7; S4; Kenya Red Cross, 2019). For example, agricul-
tural and food security forecast users explained the importance of 
“acquisition of inputs (crop types, seeds etc) and land preparation” decisions 
ahead of the main rainy season (February in O2 in eastern Africa; March 
and April in O3 in southern and northern Ghana, respectively; K04). 
Later feedback from forecast users revealed that new S2S forecast 
products were indeed “helpful as [an] advisory service to farmers on setting 
dates/times for land preparation activities, including procurement of inputs 
such as manures, seeds, fertilizers etc” (KO6). Furthermore, these timelines 

of decision-making identified potential gaps in existing forecast provi-
sion. Such decision-making calendars have been used in previous studies 
to identify key entry points where seasonal information with a longer 
lead time can support existing drought early warning systems (Mwangi 
and Visman, 2020, Audia et al., 2021). In this context, the real-time S2S 
data allowed the provision of weekly updates to complement existing 
monthly and seasonal forecasts (O2; KO4, KO7). 

A third theme of user-guided iteration to improve application was in 
the visualisation of forecast products. For example, in CS: CAfrClim the 
use of grey shading for land regions with zero probability of substantial 
rainfall anomalies was applied based on feedback to improve the clarity 
of the product. Furthermore, during the stakeholder workshop in CS: 
KenFloodRisk users were shown the same sub-seasonal forecast infor-
mation in five different forms. Interestingly, a box and whisker plot, 
which is often favoured by researchers for displaying probabilistic in-
formation, was ranked lowest by users for usefulness (Figure D in S9). 
Ranked highest were spatial maps (Figure A in S9) and bar graphs 
(Figure E in S9) of weekly precipitation. The former is already being 
routinely produced as part of the testbed and the user-guided iterations 
of the latter are shown in Fig. 5. These findings show visualisation is a 
key factor influencing user interpretation, a finding common with the 
representation of longer-term climate information (Daron et al., 2021). 
It also re-emphasised the need for the co-production of forecast products 
with users, rather than individual groups perpetuating the status quo. 

A final, related, theme for making forecast products more actionable 
is their communication. For example, how a plot is labelled does not 
always make it clear to all groups what it shows. Nuances in terminology 
such as ‘validation date’, ‘forecast date’ or ‘initialisation date’ created 
confusion (KO8) and highlighted the need for clarification and better 
communication of existing and new forecast products. Communication 
improvements can be very specific to a particular product, for example 
in CS: CAfrClim the thresholds used in Fig. 4 are user-defined and 
designed, for consistency and clear communication, to match the 
existing bulletin (Fig. 2). Or, in CS: KenFloodRisk the difference between 
the model hindcast and the observations (Fig. 5(c)) caused confusion 
and mis-interpretation of the information so showing a bias corrected 
version (Fig. 5(d)) improved clarity considerably for users. In the case of 
CS: KenFloodRisk having direct access to the real-time data allowed the 
provision of a bias-corrected forecast, which took account of any sys-
tematic biases in the model, and enabled users to directly compare the 
forecast with local observed rainfall. The requirement for bias- 
correcting or calibrating a forecast model is a complex communication 
challenge in itself and takes considerable resource to apply in individual 
product applications. 

As well as the specific information shown in the product, commu-
nication challenges also relate to the context into which the forecast 
products will be delivered. This was explored through a country-level 
network mapping exercise (KO5; see S5 in supplementary material for 
an example). One observation from this exercise was that in Kenya, 
following devolution, there are Directors of Meteorological Services 
appointed for each County that play a key role in supporting county 
government decision-making including through downscaling of weather 
information and development of services to support county-specific 
livelihood priorities. This is not currently the case in Ghana and 
Nigeria where forecast information is shared at a national level with the 
sector ministry (e.g., Ministry of Food and Agriculture; MOFA) which 
then disseminates to a regional level through MOFA. The advantages of 
the Kenyan model of County-level meteorological experts was recog-
nised and the potential for implementing a similar structure elsewhere 
was discussed (KO5). Investigating the impact of these organisational 
structures on the uptake of S2S forecast information should be a focus of 
future research. 

The kick-off workshop activities and case study examples given in 
this study highlight that co-production can be used to increase the 
appropriate use of S2S information in operational forecasting in Africa, 
provided they are reliable and actionable. Specifically, it has been 
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shown that forecasts can be made more actionable when users are 
included in discussions of scale, timing, visualisation, communication 
and evaluation of products. Table 3 provides a summary of activities and 
findings, across the building blocks of co-production, during the African 
SWIFT testbed kick-off workshop. 

Collaboratively co-producing forecasts in this way may increase their 
appropriateness and uptake, however, it comes at a cost. It is time 
consuming and requires more personal commitment from individuals 
within institutions than other modes of knowledge production (KO8; 
Lemos et al., 2014). To account for this the S2S testbed identified a small 

subset of key users rather than a larger group in which the equitable, 
trust-based relationships required would be harder to build. Whilst the 
small number of, largely technical, forecast users was a function of the 
initial S2S testbed design, it does present limitations in scaling up test-
bed approaches and outputs to further their impact in wider and more 
remote regions. To address this issue, operational best practices and 
lessons learnt from the co-production process will be documented so 
they can inform future research agendas and operational procedures. 

Key challenges 

(b) What key challenges there are in making the co-production of project- 
initiated S2S forecast products sustainable 

Many key challenges have already been encountered during the co- 
production process within the African SWIFT S2S testbed. These are 
discussed below along the three emerging themes of process, sustain-
ability and evaluation. 

Process 
It has been a considerable challenge incorporating widely differing 

views of co-production in the context of a real-time, operational testbed. 
These differing views were clear at the outset of the S2S testbed (KO2). 
Expectations of the users focused on the tailoring of products and the 
improved timing of forecast delivery. Meanwhile, expectations of fore-
cast producers and researchers centered around the examination of 
forecast skill, as well as the improvement of trust and use of their sci-
ence. All actors had the expectation that the co-production process 
would increase the use and uptake of S2S forecasts. This discussion 
revealed that some testbed participants take a descriptive view (Bremer 
et al., 2017) - that co-production embeds the existing power structures, 
even after collaborative interactions between researchers, forecast pro-
ducers and users. This was particularly apparent in the comments of one 
forecast producer who suggested that users would be consulted, but not 
co-conceptualise new products: “our intention is to come up with [our 
own] working tools. I think that [the users’] contributions could only guide 
us to tailor our deliverables to something similar [to what we originally 
conceived].” This view of co-production does involve user interaction, 
but only within the existing power structures and not with joint 
ownership of the process (KO2, KO8). Other participants take the 
normative view (Bremer et al., 2017) - that co-production is a deliberate 
aim of the participating actors to engage in a process which, by including 
new perspectives, increases knowledge for use in decision making. This 
view was held by many users who expressed an expectation to have a 
better understanding and ability to communicate the forecast products, 
through their involvement in the co-production process (KO2). In light 
of these differing views, it was important to formalise the respective 
roles of forecast producers and users in an operational co-production 
action plan which served as a memorandum of understanding between 
groups involved (KO7, S8). 

While all groups had expectations to increase the uptake of S2S 
forecast information (KO2), both descriptive and normative views of co- 
production were envisaged as pathways to do so. Understanding these 
different views of co-production, and the existing power structures in 
which they are held (Daly and Dilling, 2019, Turnhout et al., 2020), will 
help in addressing some of the barriers, at both individual and institu-
tional levels, to the uptake of forecast information and provide insight 
into how it actually works in practice (Lemos et al., 2018). Specifically, 
Daly and Dilling (2019) argue a normative approach to co-production 
can only be transformative if the inequalities in partnerships are 
addressed and all actors, particularly scientists, reflect on their own 
practices to improve their productive engagement with other knowledge 
systems; a process which will take considerable time and personal 
commitment (Lemos et al., 2014). 

Sustainability 
A major challenge within the S2S testbed is ensuring resources to 

Table 3 
Summary of initial testbed, and kick-off workshop, activities under each co- 
production building block.  

Building block Summary of activities Summary of findings 

B1: Identify key 
actors and 
build 
partnership 

Pre-kick-off forecast user 
questionnaires exploring 
the role of weather in user 
decision-making (KO1). 

> Forecast users identified the 
importance of dry and wet 
spells within a season. 
> Timing of forecast delivery 
is crucial to its usefulness for 
preparedness action. 

B2: Build 
common 
ground 

Making explicit and 
agreeing respective 
expectations (KO2). 

> Misunderstandings in 
terminology should be 
challenged at the outset. 
> Highlighted differences in 
expectations: forecast users 
focused on timing and 
communication; forecast 
producers and researchers 
focused on skill. 

B3: Co-exploring 
needs 

Sector-themed discussions 
(KO3). 
Timelines of sector-specific 
decision making (KO4). 

> For users forecast reliability 
is strongly linked to legitimacy 
and trust. 
> Potential for improving 
products by using user- 
defined, sector- and location- 
specific thresholds.  

> Weekly updates to forecast 
information bridges a gap in 
existing operational forecast 
products. 
> Tailoring forecasts is far 
more resource intensive than 
producing generic products. 

B4: Co- 
developing 
solutions 

CS: CAfrClim  

CS: KenFloodRisk  

> User-guided iterations to the 
spatial scale, timing, 
visualisation and 
communication of information 
in forecast products can make 
them more actionable. 
> User-engagement can be 
more consultative at this stage 
of the process. 

B5: Co- 
delivering 
solutions 

Network mapping of 
communication structures 
(KO5) 

> Structural differences in 
communication networks 
across different regions 
influences the uptake of S2S 
forecast information. 

B6: Evaluate Evaluation of forecast skill ( 
de Andrade et al., 2021, 
Endris et al., 2021). 
Evaluation of 
communication through bi- 
annual forecast producer 
and user questionnaires 
(KO7) and diary keeping 
(KO8) 

> All groups should be 
included in ongoing 
monitoring, evaluation and 
learning in the co-production 
process. 
> Iterative feedback process 
more effective when sufficient 
resource has been invested in 
relationship-building. 
> Need for strengthening users 
understanding of probabilistic 
information. 
> Need for strengthening 
producers’ and researchers’ 
ability to communicate 
technical concepts.  
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continue the project-initiated services developed. The new forecasting 
tools and products can only continue to be operational after the S2S 
testbed if; the real-time S2S data continues to be available; new 
knowledge is tied to institutions rather than dependent on individuals; 
and efforts are taken by operational forecasting agencies to systemati-
cally produce the new products. Meeting the first requirement is reliant 
on the S2S testbed participants evidencing the impact of new forecasting 
tools in users’ decision-making, whilst solutions to the latter two are 
arguably rooted in capacity building and training of all groups. 

Ongoing access to the real-time S2S forecast data (Vitart et al., 2017) 
is contingent on evidencing the impact of new forecasting tools. Criti-
cally, such evidence involves not only reporting on meteorological 
forecast skill but also on the co-production process itself by incorpo-
rating user feedback (KO6). Documenting this process will help inte-
grate practice with theory (Lemos et al., 2018) and identify where 
resources can be best directed to support effective ongoing co- 
production. Furthermore, the S2S testbed, and African SWIFT project 
more generally, has a focus on strengthening in-country collaborations 
between NMHSs and research institutions (Table 2). Many previous 
projects have worked with one of these entities, however, the S2S test-
bed approach builds cross-institutional collaborations required to sup-
port the resource for ongoing action-based forecasting. 

Co-production within the S2S testbed relies on participants working 
within new methods of knowledge production. Whilst valuable new 
skills are being acquired by individuals, documenting these skills, 
ensuring shared ownership of the process and providing training are 
imperative to enabling knowledge to become institutional rather than 
remaining individual. Furthermore, systematic monitoring and learning 
is required in order for NMHSs, particularly, to demonstrate the value of 
new services and on this basis justify requests for increased investment 
from national and sub-state governments, as well as further interna-
tional investment. While potentially beyond the scope of the current S2S 
testbed, future solutions to ensuring project-initiated services can 
continue could include sustainable business models through pub-
lic–private sector partnerships, as other projects have sought to support 
(e.g., Ouédraogo et al., 2018; Ouédraogo et al., 2020). 

Evaluation 
Evaluation is a cross-cutting theme of the entire S2S testbed co- 

production process. While sources of predictability on S2S timescales 
present huge potential in aiding action-based forecasting (White et al., 
2017), it is important to remember that forecasting on these timescales 
is still in its infancy (e.g., Moron and Robertson, 2020). It is therefore 
critical that any provision of new forecasting tools coincide with a sys-
tematic assessment of their skill (de Andrade et al., 2021, Endris et al., 
2021). The challenge does not stop there, however; communication of 
forecast skill in new tools and products is arguably as important for its 
appropriate use in decision-making. The responsibility for improving 
communication lies with all groups in the co-production process. In the 
context of this forecasting testbed, responsibilities for maintaining 
collaboration within the iterative feedback process have been formalised 
through operational co-production action plans within each group (O1- 
O6; KO7). Ongoing user evaluation is captured through the bi-annual 
forecast user and producer questionnaires (KO6). Initial results from 
these have demonstrated that there is still a recognised need for 
strengthening decision-makers understanding and confidence in using 
probabilistic forecasts. However, there is an equally strong need to 
enhance the understanding and capability of forecast producers and 
researchers to systematically and effectively communicate the key 
technical concepts of their forecast products. Developing strategies 
which address both of these challenges will be a focus of the ongoing 
African SWIFT testbed. 

Lessons learnt and conclusions 

(c) What lessons have been learnt so far about how co-production can 

increase the appropriate use of S2S forecast information, and how they can 
inform future collaborative efforts 

To ensure project-initiated services can continue, relies on evidence 
that new forecasting tools are beneficial to decision-makers. Here, three 
main lessons are highlighted focussing on the three key challenge 
themes identified in the previous section. These lessons continue to 
guide S2S testbed activities and can inform other future collaborative 
efforts.  

• Ensure sufficient resource to support co-production 

Co-production is a complex process with different types of interac-
tion amongst different groups at different points in the process. It is not a 
simple solution to overcoming barriers to the uptake of forecast infor-
mation (Lemos et al., 2018). Rather, it requires considerable investment 
of time and resources from all participants to develop an understanding 
of each other’s contexts and knowledge systems to then jointly define 
and seek to address shared issues of concern. Recognising that co- 
production is resource-intensive, the S2S forecasting testbed has high-
lighted key points and approaches for maximising the benefits of co- 
production. Across the process, in-depth engagement of users (immer-
sive co-production) has been found to be particularly vital in the co- 
exploring needs and evaluation building blocks (B3 and B6), while 
their engagement can be less intensive (more consultative), but still 
effective in this context, during the co-development part of the process 
(B4). Specifically, later stages of the process suffer if sufficient resource 
is not invested in the early relationship-building stages. The iterative 
feedback process has been far more effective with groups who have been 
engaged from the outset of the co-production process and attended the 
kick-off workshop. This study has applied a particular co-production 
framework (Carter et al., 2019), however, there remains a wide vari-
ety of co-production approaches (e.g., Bremer and Meisch, 2017; Vin-
cent et al., 2018) and the efficacy and resource demands of each still 
requires more thorough assessment and metrics for measuring their 
effectiveness developed.  

• Support capacity building in all groups 

The root of many challenges within the S2S testbed co-production 
process is effective communication. The responsibility for addressing 
communication challenges does not lie with a single set of actors, but is 
shared across all groups. From experience within the S2S testbed, 
focused capacity building activities substantially improve communica-
tion. For example, there is a need to invest sufficient resources into 
strengthening decision-makers’ understanding of key forecast concepts 
and enhancing forecast producers’ and researchers’ capability to effec-
tively communicate these technical concepts. Such capacity building 
activities can contribute to creating the common ground required to 
enable effective co-production to take place (B2, B3). Some studies 
suggest the inclusion or creation of boundary organisations, with spe-
cific expertise, could provide a resource-efficient solution to doing this 
(Lemos et al., 2014). Other initiatives have specifically sought to 
strengthen the capacities required to support effective engagement in 
meteorological agencies and research institutions themselves, rather 
than relying on external organisations (Visman and Tazen, 2019). The 
co-production approach adopted within the S2S testbed has, by 
combining expertise and resources from NMHSs and in-country research 
institutions (Table 2), gone some way to strengthening engagement 
capacities amongst partners.  

• Include decision-makers in forecast evaluation 

In order to enable useful monitoring that can support the ongoing 
process of learning and product-development, it is critical that combined 
evaluation systems are developed. That is systems which combine 
meteorological forecast skill evaluation with a consideration of how the 
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forecasts have benefitted, and could better support, key weather- 
sensitive decision-making processes. The former in isolation only re-
veals forecast reliability, whilst the latter in isolation only indicates how 
useful the forecast product can be. However, it is clear that to develop 
appropriate action-based S2S forecast products and tools evaluating 
both reliability and usefulness are essential (White et al., 2017). 
Developing a combined evaluation system is not an easy process and 
itself necessitates co-production: requiring different knowledge sources 
and practices from all groups working together to develop shared un-
derstanding about different and complementary evaluation processes 
and jointly agree metrics or indicators of ‘success’ that can track changes 
in areas of respective primary interest (Visman et al., 2018). 

The GCRF African SWIFT S2S testbed provides an exciting real-time, 
operational context to explore how co-production can improve the 
appropriate use of S2S forecast information in decision-making. While 
information on these timescales has huge potential to support early 
warning systems, and strengthen resilience to weather-related risks, it 
will only be able to do so if the forecast information is reliable and 
relevant to users’ specific decision-making processes. Ultimately, the 
success of the S2S testbed will not be defined by advances in scientific 
understanding, but by the resulting socio-economic benefits to which 
knowledge-exchange and learning that occurs between individuals and 
institutions as part of the co-production process can contribute. 
Demonstrating the tangible benefits resulting from co-produced climate 
services will support establishing sustainable pathways for the co- 
production of weather services on sub-seasonal to seasonal timescales 
in Africa will ensure that these efforts live beyond the lifespan of this 
project and can shape future operational procedures and further 
collaborative efforts. Engaging with users of climate services offers ways 
of collating the data to demonstrate these tangible benefits. 
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