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Rangelands dominate arid and semi-arid lands of the Greater Horn of 
Africa (GHA) region, whereby pastoralism being the primary source of 
livelihood. The pastoral livelihood is affected by the seasonal variability 
of pasture and water resources. This research sought to design a grid-based 
forage monitoring and prediction model for the cross-border areas of the 
GHA region. A technique known as Geographically Weighted Regression 
was used in developing the model with monthly rainfall, temperature, 
soil moisture, and the Normalized Difference Vegetation Index (NDVI). 
Rainfall and soil moisture had a high correlation with NDVI, and thus 
formed the model development parameters. The model performed well 
in predicting the available forage biomass at each grid-cell with March-
May and October-December seasons depicting a similar pattern but with 
a different magnitude in ton/ha. The output is critical for actionable early 
warning over the GHA region’s rangeland areas. It is expected that this 
mode can be used operationally for forage monitoring and prediction over 
the eastern Africa region and further guide the regional, national, sub-
national actors and policymakers on issuing advisories before the season. 
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1. Introduction
The Greater Horn of Africa (GHA) region is one of the 

regions in the world that are most vulnerable to climate 
change and extreme climate events. This is particularly 
so in the arid and semi-arid lands (ASALs). The ASALs 
are dominated by rangelands home to pastoralist and 

agro-pastoralist communities who are dependent on live-
stock for their livelihoods. It receives a bimodal rainfall 
pattern, that is, March to May (MAM), known as the long 
rain season [1], and October to December (OND) as the 
short rain season. These rainfall seasons are mostly modu-
lated by the Inter-Tropical Convergence Zone (ITCZ) [1-3]. 
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The rainfall variability over the GHA region has also been 
linked to the variability of the sea surface temperatures 
over Tropical Pacific and Western Indian Ocean basins [4-7].  
The two rainy seasons are followed by a dry season, char-
acterized by a shortage of natural forage/pasture and water 
resources, especially if a season’s rainfall (amount and 
distribution) is below the long-term average. Consequent-
ly, reducing animal feeds availability within the range-
lands in the region affects the livestock sector’s operation 
and sustainability [8]. This further impact severely the pas-
toral livelihood, thus the need for natural pasture forage 
prediction for an effective Early Warning System (EWS). 

The GHA region remains the largest producer of tradi-
tional livestock globally [9], with major export of animals 
to the Middle East countries and Gulf States [10]. Livestock 
in this region is the primary source of livelihood [11,12] and 
is currently experiencing several challenges due to scarcity 
of water and feed. Governments have reduced the grazing 
areas within the rangelands through the creation of con-
servation schemes, game reserves, and national parks [11].  
This restricts seasonal mobility and prevents pastoral-
ists from accessing these areas, which leads to conflict 
with the security personnel during the period of scarcity. 
Non-Governmental Organizations (NGOs) operating in 
ASALs also introduced crop cultivation in the pastoral 
range areas, which deprived pastoralists of valuable pas-
ture [11]. In addition to these challenges is drought, which 
is the significant devastating hazard over the GHA region 
that depletes pasture and widespread death of livestock 
and humans in extreme cases [10,12]. Hence, it is critical to 
manage and monitor the remaining grazing areas for pas-
toral communities in the region.

Seasonal livestock mobility is central in the pastoralist 
way of life [10], and such mobility largely disregards national 
and international boundaries. Their seasonal movement is 
mainly dictated by climate conditions which affect pasture 
and water availability, and sociocultural conditions [10,11]. 
The seasonal movement is critical in terms of ecosystem 
preservation and sustainable use of pastoral resources over 
the ASALs. For example, transhumant pastoralists within 
Kenya and Ethiopia’s cross-border area are influenced by 
the rainfall pattern, causing them to live half of the year in 
Kenya and the other half in Ethiopia [11]. Pastoralist mobil-
ity sometimes induces conflict related to resource use, and 
the conflicts intensify during the periods of drought and 
famine [10-12]. Thus, areas with permanent pasture need to be 
identified and managed to act as a safety net for pastoralists 
during the periods of drought in the ASALs. Managed dry 
season grazing combined with forage prediction will help 
in early action before a major catastrophe in the ASALs of 
the region. This is critical as a shrink in natural pasture can 

worsen conflicts in the region. 
Opio [8] gives the current practice in the livestock sector 

within the East Africa region. The paper formulated a feed 
resource sharing plan across communities and countries 
where the pastoralist faces similar challenges. This plan 
is critical in resilience building for the livestock sector 
in the Horn of Africa [8], which can improve significantly 
with the incorporation of fodder/forage prediction for 
early warning. The work of range fodder early warning 
in some of the Inter-Governmental Authority on Devel-
opment (IGAD) Member States so far depends on instant 
rangeland feed assessment, without projection into the 
future, which has a limitation in providing advance early 
warning for preparedness and response. The Kenyan Na-
tional Drought Management Authority (NDMA) monitors 
drought in the ASALs of the country through the Stand-
ardized Precipitation Index (SPI) [13,14] and Vegetation 
Condition Index (VCI) [14,15]. This only gives the state of 
situations, reporting time, in the counties without antici-
pating the future using climatic conditions. Thus, in most 
cases reactive measures are taken instead of proactive 
measures.

Matere [14] attempted to develop a Predictive Livestock 
Early Warning System (PLEWS) for Kenya in terms of 
forage status. This is an upgrade of the Livestock Early 
Warning System known as LEWS [16]. The PLEWS use 
PHYGROW (Phytomass Growth Model) model and the 
Auto-Regressive Integrated Moving Averages (ARIMA) 
model with a moving average to forecast forage condi-
tion. This is still at a pilot stage, and it is worth noting 
that the PHYGROW model used is not freely available. 
This system’s output is based on administrative bounda-
ries [14], which is a limitation since vegetation/forage con-
dition knows no political boundary. Climate as a driver 
of vegetation condition should be considered in forage 
prediction [17,18] which is not the case in the used ARIMA 
model.

Rainfall over time has been documented as a variable 
for predicting forage in rangelands [17,19] due to the strong 
correlation between rainfall and the Normalized Differ-
ence Vegetation Index (NDVI) [17] with NDVI being the 
dependent variable. While confirming the strong relation-
ship, Georganos [18] indicated that the relationship is some-
what complex and non-linear. Thus, for modeling, there 
is a need to develop a regression model that allows the 
relationship between rainfall, temperature, soil moisture, 
and NDVI to vary in space other than traditional Ordinary 
Least Squares (OLS) regression [18]. The development 
of the forage prediction model in this study is based on 
the Gray System theory [20], which solves a time-vary-
ing non-linear system [21-23]. It provides an approach to 
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investigate the input-output process’s relationships with 
unclear inner relationships, uncertain mechanisms, and 
insufficient information [22,23]. This technique will be used 
in achieving the research objective which is to design and 
customize a grid-based prototype rangeland feed monitor-
ing and prediction system for the cross-border areas of the 
GHA region.

2. Material and Methods 

2.1 Study Area

The study covers transboundary areas along Ethiopia, 
Kenya, Somalia, South Sudan, and Uganda borders. These 
areas are known as Karamoja Cluster (along Uganda, 
South-Sudan, Kenya, Ethiopia border), also known as 
IGAD Cluster 1; IGAD’s Cluster 2 and 3 (cross-border 
area shared by Kenya, Ethiopia, and Somalia). The clus-
ters specifically cover the districts in the Karamoja region 
of Uganda; West Pokot, Turkana, Marsabit, Wajir, and 
Mandera counties in Kenya; South Omo, Borana, and Li-
ben Zones in Ethiopia; and Gedo region in Somalia (Figure 

1). Much of the study area is covered by shrubs and grass-
land, which defines the area as a pastoral zone (Figure 1). 
The study area receives a similar rainfall pattern in two 
seasons: March to May and October to December. This 
rainfall pattern and amount directly link to vegetation dis-
tribution over the study area.

2.2 Data Source

The datasets used in the study were: land cover (LC), 
NDVI, rainfall, temperature, soil moisture, and livestock 
mobility. The administrative boundary data used in the 
study were taken from the Global Administrative bound-
ary (GADM) database (www.gadm.org), version 3.4. The 
LC data adopted here are the “S2 prototype LC map at 
20 m of Africa 2016” released by the European Space 
Agency (ESA) on the 2nd of October 2017 (https://www.
esa-landcover-cci.org/). Climatic and environmental data-
sets, i.e. rainfall and NDVI, were obtained from the IGAD 
Climate Prediction and Applications Centre (ICPAC). 
ICPAC is a specialized institution of IGAD located in 
Nairobi-Kenya with the mandate of providing climate re-
lated services to eleven-member countries. 

Figure 1. Land cover types over the study area, which covers the IGAD Cluster 1 (cross border area shared by Uganda, 
South-Sudan, Kenya and Ethiopia), IGAD Clusters 2 and 3 (cross-border area shared by Kenya, Ethiopia, and Somalia)
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The NDVI data was available from 1999 to the near-pres-
ent (http://gmes.icpac.net/data-center) at a spatial reso-
lution of 0.01° and monthly temporal resolution. This is 
preferred over MODIS data since they are cloud-free [17] 
and used as an indicator for biomass production. Rainfall 
data known as Climate Hazards Group InfraRed Precip-
itation with Station data (CHIRPS) monthly dataset [24]  
was obtained from the ICPAC database at a spatial resolu-
tion of 0.05°. The dataset is available from 1981 to the near 
present, originally from the Climate Hazard Group (CHG). 
This dataset has been used over the region in past studies and 
shown to perform well [24-27]. Temperature is a variable that 
does not significantly vary in space and was obtained from the 
National Oceanic and Atmospheric Administration (NOAA) 
database, with a spatial resolution of 0.05° at a monthly 
temporal resolution from 1948 to near present. Soil Mois-
ture data adopted here is the Soil Moisture Active Passive 
(SMAP) data from the National Aeronautics and Space Ad-
ministration (NASA) database launched in January 2015 [28].  
The SMAP covers have a global extent and can be obtained 
at 3 km spatial resolution [28]. 

2.3 Methods

As a prerequisite for modeling, all the datasets were 
grouped into three sets, that is, fifteen years for model 
development (1999-2013), four years to bias correct the 
model (2014-2017), and the remaining two years for 
model validation (2018-2019) at a seasonal time scale. 
This is because livestock mobility is based on seasonal 
rainfall. These seasons are March-May (MAM), which 
has the highest amount of rainfall over the study area, 
thus more forage production, and October-December 
(OND), known as the short rain season. These datasets 
were subjected to a multicollinearity test which is a crit-
ical step before developing a model with more than one 
independent variable. The collinearity test helps improve 
model performance and has been used and discussed in 
several studies [29-32].

An experimental technique known as Geographically 
Weighted Regression (GWR) was used in developing a 
prototype rangeland feed prediction model. The GWR 
technique is preferred over the Ordinary Linear Regres-
sion (OLR) method due to its capability of examining the 
existence of spatial non-stationarity in the relationship 
between a dependent variable and a set of independent 
variables [18,33-35]. This technique is fully described by 
Fotheringham [33]. This method allows estimation of the 
local parameter by considering the location of observation 
as shown by the equation below;

In the model above, the coordinates of location i are 
represented by ui, vi while a and b are local parameters 
to be estimated, particularly at location i [18]. In brief, the 
technique uses a moving window over the data, estimating 
one set of coefficient values at every chosen “fit” point [36].  
The fit points are often the grid points at which obser-
vations were made, and if the local coefficients vary in 
space, it is taken as an indication of non-stationarity [37]. 
The prediction model’s output was converted to total for-
age biomass using the technique described by Hobbs [38]  
and its output in Kg/ha. The unit was then converted to 
tonnes per hectare (ton/ha) i.e. 1 ton/ha = 1000 kg/ha. 
Available forage biomass was computed from the total 
forage biomass using a factor presented by Toxopeus [39] 
as in the equation below. 

Available Forage = Total.Forage.Biomass * 45%

2.3.1 Model Skill Assessment and Validation

The “eyeball” method is still the most commonly used 
method in spatial verification [40] and was adopted in this 
study to compare the results side by side and uses human 
judgment to discern forecast errors. However, this meth-
od is not quantitative [40]. In addition to this, quantitative 
methods were also used in model skill assessment, i.e., 
the Mean Error (ME) also known as bias and Relative 
Mean Absolute Error (RMAE). Both of these methods es-
timate the average prediction error [35], and give a perfect 
score when the value is zero [41]. Reliability diagram [42] 
also known as attribute diagram was used to determine 
the model’s skill. A model’s reliability is indicated by the 
proximity of the plotted curve to the diagonal line [42-44]. 
The deviation of this curve from the diagonal line gives a 
conditional bias. If the curve lies below the diagonal line, 
this indicates over-prediction; but above the line means 
under-prediction. 

3. Results and discussion

3.1 Result from the Multicollinearity Test

A multicollinearity test on the dataset was done at each 
grid point for the two seasons (MAM and OND) using the 
diagnostic test. The result of the diagnostic test was then 
subjected to the variance inflation factor (VIF) with a cut 
point of 2.5 to determine collinearity and the Klein rule 
to give the location of collinearity. The results (Table 1) 
show no multicollinearity in the dataset, hence no need for 
data filtering.

In addition to this, seasonal rainfall and soil moisture 
were well correlated spatially with maximum NDVI over 
the study area for the two seasons. Few places had a neg-
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ative correlation, especially with rainfall. This was attrib-
uted to the growth of the vegetation’s with a continuous 
increase of rain in rainless areas [45]. On the other hand, the 
temperature gave poor correlation with maximum NDVI, 
temperature was thus dropped from the prediction model 
development. Hence, seasonal rainfall and soil moisture 
were considered as predictands of NDVI. 

Table 1. Seasonal multicollinearity diagnostic to deter-
mine the location of collinearity for rainfall, temperature 
and soil moisture, for March to May and October to De-

cember seasons

MAM OND

VIF Klein VIF Klein

Rainfall 1.4355 0 1.1556 0

Temperature 1.7686 0 1.4565 0

Soil Moisture 2.2734 0 1.6415 0

3.2 Results of the Model Output

The model constants differ for each season and this is at-
tributed to different rainfall drivers for the two seasons [1,3,46]. 
Hence, each season had its independent model, which was 
used to predict seasonal forage biomass. The prediction for 
MAM 2018 showed that forage biomass greater than 2 ton/
ha was observed over much of the study area with high val-
ues over the western, northern, and eastern parts of the study 
area and much in the northern part in 2019 (Figure 2). A clos-
er pattern to this was observed for the OND season (Figure 3) 
with different magnitudes in ton/ha since the two are impor-
tant seasons over the study area in terms of rainfall amount. 

The observed pattern in the model output is attributed to rain-
fall and soil moisture patterns over the region. These outputs 
were then compared with observed forage biomass for veri-
fication purposes using the “eyeball” verification method [40],  
which examines the prediction and observation side by side. 
The model generally performs well in all the seasons (Figures 
2 and 3) with few pocket areas of under-prediction in the 
eastern part and over-prediction in the western part, which 
was also evident in spatial analysis of ME and RMAE. The 
over-prediction areas were noted to be high altitude areas, 
and the converse is true for areas with under-prediction.

In order to manage livestock resources effectively, 
the model can be run with a one moth lead time for each 
season using predicted seasonal rainfall and soil moisture 
data from ICPAC. The prediction of rainfall and soil mois-
ture is done using the Weather and Research Forecasting 
(WRF) model run operationally by ICPAC at seasonal 
time scale with a one-month lead time. 

3.3 Reliability Diagram

The diagram was used to determine how well the pre-
dicted events correspond to their observed frequency and 
is said to be reliable if the curve falls on the diagonal line 
and skillful if it falls on the gray area of the plot [42-44]. The 
prediction models for MAM and OND were found to be 
reliable, with small parts of the curve fall outside the gray 
area; thus, the model has good skill in predicting forage 
biomass. An example for OND season is shown in Figure 
4. This result gives confidence in using the model for sea-
sonal prediction. 

Figure 2. Bias corrected predicted forage biomass compared with observed forage biomass for the March to May sea-
sons from 2018 to 2019
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4. Conclusions
Pastoralists in the Horn of Africa adapted to the tem-

poral and spatial variability of critical resources (water 
and rangeland forage) in their landscape by practicing 

seasonal mobility with livestock (transhumance) to opti-
mally utilize scarce resources. Such transhumance primar-
ily crosses political boundaries. It is essential to develop 
early warning tools covering international borders; hence, 

Figure 3. Bias corrected predicted forage biomass compared with observed forage biomass for the October to December 
seasons from 2018 to 2019

Figure 4. Reliability diagram for observed relative frequency against predicted probability for October-December 2018 
season. It is reliable if the curve falls on the diagonal line and skillful if it falls on the gray area of the plot
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a grid-based prediction is critical as it gives information 
across borders. This prototype prediction model is grid-
based and performs well in forage biomass prediction 
over the study area, with rainfall and soil moisture being 
the significant drivers. It is currently running operationally 
at IGAD and at a seasonal time scale. This model’s output 
informs the livestock sector group discussion at the Great-
er Horn of Africa Climate Outlook Forum (GHACOF), 
a regional early warning platform organized by ICPAC 
three times a year. This model contributes to timely and 
actionable early warning information for the rangeland, 
critical to pastoralists, sub-national key actors (government 
and NGOs), and other relevant policymakers within the 
region.
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