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A B S T R A C T   

Heavy snowfall is a natural disaster that causes extensive damage in South Korea. Therefore, predicting heavy 
snowfall occurrence, identifying vulnerable areas, and establishing response plans to reduce risk are crucial. In 
this study, to project heavy snowfall, meteorological and geographic data from the past 30 years were collected, 
and four machine learning algorithms were trained and compared: multiple linear regression, support vector 
regression, random forest regressor (RFR), and extreme gradient boosting. We observed that the RFR model (R2 

= 0.64) demonstrated the most optimal performance in projecting snowfall compared to other models. Repre
sentative concentration pathway (RCP) scenario data was input into the RFR model to generate projection data 
up to 2100. Projection results of more than 48.2 cm based on heavy snowfall events in the past 20 years were 
observed 17 times in RCP2.6, 19 times in RCP4.5, 16 times in RCP6.0, and 17 times in RCP8.5. The annual GIS- 
based projected snowfall images for the RCP8.5 scenario were classified into five distinct groups using K-means 
clustering. These groups were then further divided based on the vulnerability of regions, including Gangwon-do, 
Jeollabuk-do, and northern Gyeonggi-do. Our study can aid decision-making on policies related to heavy 
snowfall disaster prevention standards, snow removal plans, budgeting, and the establishment of mid- to long- 
term climate change adaptation plans for government, public institutions and private organizations.   

Practical implications 

Considering the growing body of evidence pointing to climate 
change-induced shifts in climate conditions and the increased 
incidence of extreme weather events, our research narrows its 
focus to a critical facet of this challenge: heavy snowfall in South 
Korea. This meteorological phenomenon carries profound impli
cations for urban and rural societies, with particular regard to the 
disruption of transportation networks and urban infrastructure. 
Effective responses to heavy snowfall necessitate the ability to 

project short-term, medium-term, and long-term snowfall patterns 
while simultaneously developing robust adaptation strategies. 

Drawing upon data from Representative Concentration Pathway 
(RCP) scenarios, our study employs advanced machine learning 
techniques to project snowfall trends in South Korea. The results of 
our analysis reveal a troubling prognosis: both the frequency of 
heavy snowfall and snowfall depth are expected to increase across 
most regions of the country. This underscores the pressing need for 
proactive adaptation measures that can help mitigate urban risks 
and safeguard communities. Distinguishing our work from prior 
research endeavors that have primarily concentrated on quanti
tative aspects of future snowfall, this paper aims to translate 
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intricate climate projection data into readily understandable vi
sual representations through image clustering. This novel 
approach promises to facilitate comprehension and decision- 
making among policymakers and stakeholders alike. To equip 
policy decision-makers with the insights necessary for formulating 
response plans that minimize the risks associated with heavy 
snowfall, it is essential to gain a comprehensive understanding of 
evolving snowfall patterns. This entails identifying years marked 
by heightened snowfall activity and pinpointing areas that are 
particularly vulnerable to these meteorological shifts. 

We are acutely aware of the inherent uncertainties associated with 
climate projection models and RCP scenarios, which may intro
duce subjectivity into decision-making processes. Nevertheless, in 
the face of mounting extreme climate events, the potential utility 
of snowfall forecast maps as communication tools within climate 
change adaptation policies cannot be understated. Moreover, the 
incorporation of detailed spatial indicators, such as population 
density, building distribution, and regional adaptive capacity, 
enables a more robust assessment of vulnerability, utilizing the 
snowfall forecast data as a central component in climate exposure 
analysis in subsequent studies. In summary, this research en
deavors to shed light on the repercussions of climate change- 
driven heavy snowfall in South Korea and the imperative need 
for pragmatic adaptation strategies. By making climate data more 
accessible and actionable, we aim to empower decision-makers to 
safeguard urban communities and infrastructure against the 
challenges posed by heavy snowfall events in our changing 
climate. 

Data availability 

Data will be made available on request.   

Introduction 

The sixth assessment report of the Intergovernmental Panel on 
Climate Change (IPCC) stated that the abnormal climate observed 
worldwide is due to the rapid climate change caused by global warming 
(IPCC, 2014; IPCC, 2023). Heavy snowfall, one of the abnormal clima
te phenomena, frequently occurs in the northern mid-latitudes (Krasting 
et al., 2013) and causes significant direct and indirect socio-economic 
damage. In February 2021, shipments of COVID-19 vaccines to New 
York, USA, were suspended due to the heaviest recorded snowfall in the 
past decade (France24, 2021). In January 2019, a snowstorm in Austria 
killed four people and isolated 12,000 tourists (United Press Interna
tional, 2019). In March 2018, heavy snowfall and cold waves in Europe 
killed 16 people, and over 350 flights were canceled (Associated Press, 
2018). In December 2020, a snowstorm in Japan left around 1,000 cars 
stranded and about 10,000 households without power (Deutsche Welle, 
2020). 

According to Article 3, No. 1 of the Framework Act on the Manage
ment of Disasters and Safety in South Korea, heavy snowfall is classified 
as a major natural disaster. The damages caused by heavy snowfall have 
been incurred nationwide in the safety fields of roads, logistics, trans
portation, and facilities. According to the “Disaster Annual Report 2019” 
published by the Ministry of Interior and Safety (MOIS), which annually 
establishes and publishes major statistics on the damage and recovery 
status of natural disasters, typhoons, heavy rainfall, and heavy snowfall 
damage have accounted for approximately 53.85 % ($1550 million), 
35.21 % ($1014 million), and 6.47 % ($186 million), respectively, of the 
total damage caused by natural disasters over the past decade 
(2010–2019) (MOIS, 2020). Heavy snowfall has caused extensive 
damage in Korea; thus, studies on heavy snow projection and damage 
reduction are required. 

To mitigate the impact of heavy snowfall, research on projecting 
snowfall has primarily been carried out within the realms of 

meteorology and climatology. More recently, such research has also 
expanded into the domain of disaster management. First, previous 
studies on snowfall prediction conducted in South Korea, our study area, 
were reviewed. Meteorological data, such as temperature, precipitation, 
relative humidity, wind speed, solar insolation, snowfall depth data, and 
geographical data, such as latitude, longitude, and elevation, were 
collected and utilized for developing a snowfall prediction model using 
machine learning techniques. In addition, the predictive snowfall using 
climate change RCP scenario data provided by the KMA was determined 
(Kim et al., 2013; Park et al., 2014; Kim et al., 2014; Park et al., 2016; Oh 
et al., 2020). Tabari et al. (2010) compared the predicted snow depth 
results, derived using MLR, ANN and neural network-genetic algorithm 
(NNGA), using latitude, longitude, elevation, snow cover, and snow 
density as the input variables. Comparing the R2 and RMSE values of the 
model determined that the NNGA yielded optimum results with R2 and 
RMSE values of 0.70 and 0.202 cm, respectively. Hamidi et al. (2018) 
predicted monthly snowfall in Iran using SVM, RF, and MLR methods. 
Their study was conducted using time-series forecasting, and monthly 
snowfall observation data were used as input variables. The perfor
mance of each model was evaluated using the RMSE and R2 values, and 
the SVM model exhibited exceptional performance with an R2 value of 
0.95. This value was applied for snowfall prediction in the area. Zhang 
et al. (2019) performed snowfall predictions for mountainous regions. 
Eight factors, including average temperature, relative humidity, wind 
speed, latitude, longitude, elevation, slope, and slope direction, were 
used as input parameters for the MLR and RF models to project snowfall. 
The coefficient of determination of the RF model was 0.74, which was 
superior to that of the linear regression model. Vafakhah et al. (2022) 
used various machine learning algorithms, such as BANN, SVM, Cubists, 
and RF, to predict Snow Water Equivalent (SWE) in the Sohrevard 
watershed in Iran. Nine geo-environment variables (altitude, slope, 
eastness, profile curvature, plan curvature, solar radiation, TPI, TWI, 
and wind exposition index) were used as SWE influencers. Based on the 
results obtained from the error metrics, the RF algorithm showed opti
mum performance. Meng and Zhu (2023) have provided a description of 
a study that evaluated seven machine learning algorithms for modeling 
monthly and seasonal snowfall in the lower peninsula of Michigan based 
on selected environmental and climatic variables using 65 years of on- 
site snowfall observations. Monthly temperature variables (maximum, 
minimum and average), maximum and minimum vapor pressure, lati
tude, longitude, and elevation of each station, among other factors, were 
utilized as input variables. The Bayesian Additive Regression Trees 
(BART) model emerged as the best fit for estimating monthly average 
snowfall, outperforming the RF model, with an R2 value of 0.88. 
Snowfall is a nonlinear process in which precipitation, temperature, 
relative humidity, and geographic variables are variously related. 
Studies have been conducted using statistical and machine learning 
techniques that can consider the nonlinear relationship of factors. This is 
because nonlinear activation functions (Sigmoid and Tanh) are used in 
machine learning algorithms to explain the nonlinear relationship be
tween weather factors. 

Table 1 summarizes the machine learning algorithms and input 
factors used in previous studies. Recent research has incorporated ma
chine learning models such as RF, SVR, and MLR, among others, with RF 
demonstrating favorable performance. 

Classifying, identifying, and predicting specific patterns and key 
characteristics of spatiotemporal climate and environmental data is 
significant for various purposes, such as identifying extreme weather 
patterns, studying the effects of climate change, and responding to di
sasters (Chattopadhyay et al., 2020). Recently, to identify disaster- 
vulnerable areas, studies on image grouping have been conducted by 
analyzing images, such as satellite and LiDAR images, using the K-means 
clustering algorithm. Chattopadhyay et al. (2020) studied how to cluster 
spatiotemporal RGB image data into n classes using unsupervised 
techniques, such as K-means. Ibrahim et al. (2021) collected flood image 
samples comprising land and river areas to develop an unmanned aerial 
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vehicle (UAV)-based flood detection automation system. Flood images 
were expressed using RGB and HSI color models, and flood-vulnerable 
areas were classified using the K-means clustering image segmentation 
method. Shafapourtehrany et al.(2022) used the K-means clustering 
algorithm to group large GIS-based image data collections, performing 
seismic vulnerability mapping in Istanbul, Turkey. This can improve the 
innovation and model performance required for seismic vulnerability 
mapping. 

In this study, we centered our research on South Korea as our pri
mary study area. We deliberately selected input variables that had not 
been previously applied in domestic studies, namely longitude, latitude, 
and elevation. Our primary objective was to project snowfall depth using 

machine learning algorithms that have demonstrated efficacy in previ
ous research. To achieve this, we focused on four leading approaches 
proven to be most effective in various applications: MLR, SVR, RFR, and 
XGB (Bedi et al., 2020). Furthermore, we extended our analysis by 
applying the projection model derived from our research to RCP climate 
change scenarios. This enabled us to forecast snowfall distribution in a 
geographic information system (GIS) context. Subsequently, we per
formed image clustering using the K-means clustering technique. The 
clustering results allowed us to identify areas that are particularly 
vulnerable to heavy snowfall. The insights gained from these clustered 
areas hold significant implications for future heavy snow disaster 
management efforts undertaken by government and public institutions. 
This study contributes to a more comprehensive understanding of the 
spatial distribution of heavy snowfall and facilitates proactive planning 
and risk mitigation in the face of changing climate conditions. 

Materials and methods 

Data description 

Study area and field data 
South Korea is located in East Asia and has an area of 100,410 km2. 

Its geographical coordinates are 124◦–132◦E, 33◦–43◦N. Climatically, 
South Korea has a relatively long winter, with an average temperature of 
3.8 ◦C, an average maximum temperature of 9.2 ◦C, an average mini
mum temperature of − 1.2 ◦C, an average precipitation of 8.9 mm, and 
an average snowfall of 5.7 mm during the winter season (October to 
April) for the last 10 years. Fig. 1 shows the study area and 102 ASOSs 
and 8 provinces in South Korea. 

In a comprehensive examination of methodologies and factors 
employed in prior studies, we observed that nine specific variables had 
been consistently and widely utilized in the construction of snowfall 
projection models. These nine variables are categorized into two main 
groups: meteorological factors, which encompass minimum tempera
ture, maximum temperature, average temperature, precipitation, rela
tive humidity, and snowfall; and geographic factors, comprising 
latitude, longitude, and elevation data sourced from ASOSs, as shown in 
Table 2. Daily meteorological data over the past 30 years (1991–2020) 
during the winter (October to April) were collected from 102 ASOSs 
nationwide under the KMA. 

The datasets with missing independent variables were eliminated 
because machine learning is difficult to perform when there are missing 
values in the dataset (Pratama et al., 2016). Among the 945,748 daily 
datasets collected, 42,701 were selected after excluding non-snowy days 
and datasets with missing values. In addition, multicollinearity analysis 
was performed. Multicollinearity results in an inaccurate analysis due to 
the strong correlations between the independent variables in the 
regression analysis. A general diagnostic index of multicollinearity 
states that multicollinearity occurs when the TOL is below 0.1 or the VIF 
is above 10 (Ainiyah et al., 2016). A high VIF indicates high collinearity 
(Mallick et al., 2021). Among the independent variables, we performed 
multicollinearity analysis on the meteorological factors (average tem
perature, minimum temperature, maximum temperature, daily precip
itation, and average relative humidity) and snowfall. Table 3 shows the 
results of the multicollinearity analysis. The VIF of the average tem
perature was 21.738. After dimensionality reduction, multicollinearity 
analysis was repeated by excluding the average temperature from the 
independent variables. The variance expansion coefficient of the vari
ables was ≤ 2, and it was verified that multicollinearity was absent. 

RCP scenario data 
To produce projected snowfall data for each RCP scenario, RCP 

scenario data was downloaded from the Korea Meteorological Admin
istration’s “Climate Information Portal” (https://www.climate.go.kr/ho 
me/). RCP scenario data provide grid size (135, 12.5, and 1 km), sce
nario type, climate data type, climate projection model, weather 

Table 1 
Heavy snowfall projection: Overview of variables and methods.  

Method Input variables Output 
variable 

Methods Performance 

Tabari 
et al., 
2013 

Precipitation, 
elevation, latitude, 
longitude 

Snow 
depth 

MLR, 
ANN, 
NNGA 

NNGA 

Kim et al., 
2013 

Minimum 
temperature, 
maximum 
temperature, average 
temperature, 
precipitation 

Snow 
depth 

ANN, MLR ANN > MLR 

Park et al., 
2014 

Minimum 
temperature, 
maximum 
temperature, average 
temperature, 
precipitation 

Snow 
depth 

ANN ANN 

Kim et al., 
2014 

Minimum 
temperature, 
maximum 
temperature, average 
temperature, 
precipitation 

Snow 
depth 

ANN – 

Park et al., 
2016 

Minimum 
temperature, 
maximum 
temperature, average 
temperature, 
precipitation 

Snow 
depth 

MLR – 

Hamidi 
et al., 
2018 

Snow depth Snow 
depth 

RF, SVM, 
MARS 

RF > SVM >
MARS 

Zhang 
et al., 
2019 

Average temperature, 
relative humidity, 
latitude, longitude, 
aspect, elevation, 
wind speed, slope 

Snowfall RF, MLR, 
RNN 

RF > RNN >
MLR 

Oh et al., 
2020 

Temperature, snow 
depth, rate of 
humidity change, 
solar radiation rate 

Snow 
Melting 
Depth 

MLR – 

Feng et al., 
2022 

Average temperature, 
average atmospheric 
pressure, sunshine 
duration, wind speed, 
snow depth, 
longitude, latitude, 
elevation, slope angle 

snow 
density 

MLR RF, 
XGB, 
LGBM 

RF > XGB >
LGBM > MLR 

Vafakhah 
et al., 
2022 

Altitude, slope, 
curvature, solar 
radiation, TPI, TWI, 
wind exposition 

SWE BANN, 
SVM, 
Cubist, RF 

RF > Cubist >
BANN > SVM 

Meng & 
Zhu, 
2023 

Monthly temperature 
variables, 
maximum and 
minimum vapor 
pressure, Latitude, 
Longitude, and 
elevation of each 
station, etc. 

Snowfall BART, RF, 
SVM, etc. 

BART > RF >
SVM  
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variable, and file format, among others, and can be downloaded by 
designating each data element desired by the user (Lee et al., 2020). For 
GIS analysis, each ASCII file is reclassified by year, header information 
input (e.g., number of grids in x and y directions, grid size, and left/ 
bottom grid positions), data matrix structure change, and data refine
ment work of resolution conversion and spatial disaggregation. A total 
of 467,200 files were reproduced and used for analysis, combining four 
types of RCP scenarios and 29,200 units of data for the next 80 years 
(2021 to 2100). As shown in Table 4, the climate projection model was 

selected as HadGEM3-RA, which is a regional climate model for South 
Korea. It is known that it properly simulates the statistical characteristics 
of Korean observation data and has excellent climate forecast repro
ducibility compared to other models (Reichler and Kim, 2008; S. Kim 
et al., 2019; Lee et al., 2020; Z. Kim et al., 2022). In addition, factors 
such as RCP scenario, grid size (1 km), and climate factors (maximum 
temperature, minimum temperature, precipitation, and relative hu
midity) were selected. 

Approaches and processing procedures 

Fig. 2 shows a schematic of the main structure of this study, including 
data collection and pre-processing, model development and comparison, 
application of RCP scenarios, and image clustering. The details of the 
algorithm and datasets are described below. 

Application and comparison of machine learning algorithms for the snowfall 
projection model 

The pre-processed datasets comprised the final seven inputs (mini
mum temperature, maximum temperature, daily precipitation, average 

Fig. 1. Study area: 102 ASOSs and 8 provinces in South Korea.  

Table 2 
Meteorological and geographic factors.   

Input Variables Output 
Variables 

Meteorological 
factors (daily) 

Minimum temperature (◦C), maximum 
temperature (◦C), average temperature 
(◦C), precipitation (mm), relative humidity 
(%) 

Snowfall 
(cm) 

Geographic factors Latitude (◦), longitude (◦), and elevation 
(m)   

Table 3 
Multicollinearity analysis.  

1st Input Variables TOL VIF 2nd Input Variables TOL VIF 
Average temperature (◦C) 0.046 21.738 Average temperature (◦C) - - 
Minimum temperature (◦C) 0.104 9.585 Minimum temperature (◦C) 0.533 1.877 
Maximum temperature (◦C) 0.149 6.689 Maximum temperature (◦C) 0.561 1.783 
Precipitation (mm) 0.816 1.226 Precipitation (mm) 0.816 1.226 
Relative humidity (%) 0.849 1.178 Relative humidity (%) 0.849 1.178 

Output variables: snowfall (cm)  
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relative humidity, latitude, longitude, and elevation) and one output 
variable. Furthermore, four machine learning algorithms (MLR, SVR, 
RFR, and XGB) were trained. The snowfall projection model was 
developed on a Jupyter Notebook (64-bit Windows 10) using Python 
3.7. The optimal hyperparameters for each algorithm were selected and 
applied using a grid search technique during the learning process. 
Regression model optimization using machine learning refers to esti
mating a hyperparameter that minimizes a predefined loss function in 

the training data (Luo, 2016). This study applied the grid search and k- 
fold cross-validation methods to select the optimal hyperparameter. The 
range of each parameter was set, the accuracy of the model generated 
according to the combinations was measured, and the optimal param
eter that provided maximum accuracy was selected (Claesen and De 
Moor, 2015). For the k-fold cross-validation method, the datasets were 
k-equalized into sets of the same size. The k-1 among the divided 
datasets was used as the training data, and the remaining dataset was 
used as the testing data. This method was used to verify the performance 
of the model. In this study, five-fold cross-validation was applied 
(Vabalas et al., 2019). The model performance was evaluated by 
comparing the snowfall estimated by the trained model with the actual 
snowfall value measured at the observation station. The optimal model 
was determined by comparing and verifying the accuracy of the models 
using MAE, RMSE, and R2. 

MLR 
Linear regression is an extensively used regression analysis model, 

and it has been used by researchers since the invention of artificial in
telligence (Chaloulakou et al., 2003). This method derives the results of 
independent and dependent variables using a one-dimensional linear 
predictive equation. When the cost function has a minimum value, the 

Table 4 
RCP Scenario Data Information.  

Category Selected factors 

RCP scenario 
type 

RCP2.6, RCP4.5, RCP6.0, RCP8.5 

Area South Korea 
Climate model HadGEM3-RA 
Climate factors Minimum temperature, Maximum temperature, Precipitation, 

Relative humidity 
Spatial 

resolution 
1 km 

Time resolution Daily 
Time range 2021–2100 
File format ASCII (including header information for GIS utilization)  

Fig. 2. Research workflow.  
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derived equation is the optimal predictive model. The least-squares or 
gradient descent method is mainly used to determine the minimum 
value of the loss function (Liu et al., 2021). Linear regression analysis 
refers to the estimation of a dependent variable using a statistical 
method considering the independent variables (X1, X2, …, Xk) expected 
to affect the dependent variable (Y) significantly. Multiple regression 
analysis was performed for the independent variables (factors affecting 
snowfall) in this study. Additionally, the variables were adjusted and 
analyzed after multicollinearity analysis was performed. 

SVR 
SVM (Cortes and Vapnik, 1995) is a supervised machine learning 

algorithm for classification problems. The input variable is built into a 
high-dimensional functional space using a linear or nonlinear kernel 
function depending on the relationship between the dependent and in
dependent variables. A linear model was developed in the feature space 
to maintain a balance between error minimization and overfitting 
(Bansal et al., 2021). SVR (Vapnik et al., 1997) is an extension of SVM 
applicable to classification problems and projection fields, such as 
regression analysis (Bermolen and Rossi, 2009). SVR learns in a direc
tion that maximizes the distance between the separation hyperplane and 
support vector within a threshold (Carrera and Kim, 2020). 

RFR 
The RF algorithm is a DT-based algorithm (Breiman, 2001). It is a 

model of an ensemble technique developed by combining multiple DTs 
with different structures and performances. Furthermore, it outputs 
classification or average predictions (regression analysis) from multiple 
DTs constructed during the training process. The RFR compensates for 
the bias introduced by a single DT owing to the randomness. Therefore, 
it does not easily overfit and provides high accuracy and a fast training 
speed (Babar et al., 2020). The RFR algorithm randomly selects data 
(bootstrapping) and learns individually. Bagging is an abbreviation for 
bootstrap and aggregation, a concept that collects models generated 
from each bootstrap sample. Aggregating refers to merging datasets 
formed by bootstrapping, and a random subspace is applied to train the 
datasets. Determining the split point of the DT based on the split func
tion implies that learning is performed by randomly selecting a number 
of variables less than the variables of the input data. Contrary to the DT 
algorithm, where the error is transferred at each intermediate node in 
RF, the error generated in the intermediate node of each tree is not 
transmitted to the terminal node and converges to the limit value. This 
improves the performance of the predictive model by minimizing the 
correlation between individual trees (Ganguly et al., 2019). 

XGB 
XGB (Chen and Guestrin, 2016) is known for its powerful perfor

mance, as demonstrated by recent studies. In addition, it has been 
extensively used in various applications. XGB is an algorithm based on 
GBM, a boosting model comprising a series of basic regression trees 
using a sequential ensemble technique (Zhu et al., 2021). This method 
improves error by sequentially repeating the learning prediction for 
several weak learners and assigning weights when the predicted values 
differ from the input data. The residual error of the model derived from 
Tree 1 was checked, and a predictive model that reduced the residual 
error of Tree 1 was derived from Tree 2. Subsequently, the residuals in 
Tree 2 were checked, and a predictive model that reduces the residuals 
in Tree 2 was derived using Tree 3. This method derives a model from 
the final tree with small residuals as the final prediction model while 
repeating this process (Zhu et al., 2021). Furthermore, XGB exhibits 
exceptional performance in classification and regression problems. The 
weight of the hidden layer is unknown in the case of commonly used 
ANN-based algorithms. Therefore, the correlation between each vari
able and the prediction model remains unknown. However, XGB has the 
advantage of being able to analyze the feature importance of variables. 

GIS processing for snowfall projection images 
By inputting the meteorological factors and geographic factor values 

extracted from the location of the ASOSs of the RCP scenario data into 
the optimal model, predictive snowfall data for each RCP scenario is 
generated. Using ArcGIS Pro, they are spatialized into point data with 
attribute values (latitude and longitude) and created as a 5 m grid raster 
data image of nationwide distribution through inverse distance 
weighting interpolation (Mitas and Mitasova, 1999; Murphy et al., 2010; 
Jang et al., 2015; Bienvenido-Huertas et al., 2022). Based on the pre
dicted snowfall image, K-means image clustering was performed to 
predict areas and periods vulnerable to heavy snow. Snowfall projection 
images of the RCP8.5 scenario (2021–100) were graded into 10 levels, 
including 3 cm for snow removal operation, 5 cm for heavy snowfall 
advisory, and 20 cm for heavy snowfall warning. 

K-means clustering 
K-means clustering is a representative non-hierarchical clustering 

analysis that minimizes the average Euclidean distance between pat
terns and the center of the cluster to which the pattern belongs and 
clusters large amounts of data based on similar properties (Marta- 
Almeida et al., 2016; Ruela et al., 2020). In this study, feature vectors 
were extracted from predicted snowfall RGB images (.png) using the 
VGG16 model and grouped according to image characteristics using K- 
means clustering (Abid et al., 2021). The k-value is an important 
parameter of the grouping process. The elbow method is used to select 
an appropriate k-value, as the oldest method for determining the true 
number of clusters in a dataset (Kodinariya and Makwana, 2013). In this 
study, the optimal number of clusters was calculated using the elbow 
method. During clustering, the sum of the distances between clusters 
drops sharply in one section, and the value at this point was used as the 
optimal number of clusters (Bienvenido-Huertas et al., 2021). 

Results and discussion 

Snowfall projection by RCP scenarios 

The applicability of fMLR(x), fSVR(x), fRFR(x), and fXGB(x), which were 
the optimal models for each algorithm, was evaluated using hyper
parameters. The optimum hyperparameter results of each machine 
learning algorithm were derived through grid search and five-fold cross- 
validation (Table 5). 

The RFR model exhibited MAE, RMSE, and R2 values of 1.65 cm, 
3.35 cm, and 0.64, respectively, using performance evaluation criteria. 
Additionally, it exhibited a higher projection accuracy than the three 
models (MLR, SVR, and XGB) (Table 6). The XGB model exhibited a 
performance similar to that of the RFR model because it was close to the 
evaluation standard value obtained based on the RFR model. For 
snowfall projection, ensemble models, such as RFR and XGB, demon
strated better performance than single regression models, such as MLR 
and SVR. 

The projected daily snowfall values obtained using the MLR, SVR, 
RFR, and XGB models and the observed snowfall values are shown in 
Fig. 3 using scatter plots of (a) MLR, (b) SVR, (c) RFR, and (d) XGB. We 

Table 5 
Results of hyperparameter tuning.  

Models Hyperparameters Optimal hyperparameters  
SVR Kernel Linear, Polynomial, Sigmoid, RBF RBF  

Cost 0.01, 0.1, 1, 10, 100 1  
γ 0.01, 0.1, 1, 10, 100 1 

RFR max_features 4, 8, 10, 12, 14, 16, 18, 20 4  
n_estimators 10–1000 100  
max_depth 4, 6, 8, 10, 12 10 

XGB max_features 4, 8, 10, 12, 14, 16, 18, 20 4  
n_estimators 10–1000 20  
max_depth 4, 6, 8, 10, 12 6  
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observed that the snowfall simulation of the RFR and XGB models 
exhibited better performance than that of the other two models. The RFR 
and XGB models accurately evaluated the nonlinear relationship be
tween the predictor and independent variables using a coefficient of 
determination. The MLR and SVR models partially interpreted the 
variance in snowfall. For the field observation data, there are a few 
datasets for high snowfall and several datasets for low snowfall. The 
imbalance in datasets was analyzed as the result of underestimating the 
MLR and SVR models (Park et al., 2021). Finally, a comparison between 
the statistical criteria of the four models demonstrated that the RFR was 
the optimum model for predicting snowfall. The predictive performance 
of the RFR model was exceptional because assuming a correlation be
tween the dependent and independent variables in this model was un
necessary. In addition, the performance of the ensemble models (RFR 
and XGB) was better than that of the single regression models (MLR and 
SVM). They are less sensitive to datasets with inappropriate error dis
tributions (Zhang et al., 2019). 

Applying RCP scenario data to the RFR model (Fig. 4), the trend of 
projected snowfall variation by year (2021–2100) and ten-year units 
(the 2020 s–2090 s) was analyzed. For comparison with the current 
trend, we used the annual and monthly statistics for each meteorological 

station data for the last 21 years (2000–2020) from “Statistics Korea” 
(Statistics Korea, 2022). Among all ASOS points, the peak snowfall was 
87.7 cm, observed in Daegwallyeong in 2001. The average value of the 
peak snowfall for each point was 48.2 cm, and the average snowfall was 
10.3 cm. Heavy snowfall events projected to be above the average value 
of the peak snowfall (48.2 cm) and the national peak snowfall (87.7 cm) 
in the past 21 years are shown in all scenarios. Extreme snowfall (48.2 
cm) was observed 17 times in RCP2.6, 19 times in RCP4.5, 16 times in 
RCP6.0, and 17 times in RCP8.5 in each scenario; the vulnerable areas 
with high snowfall projected were Daegwallyeong, Yeongwol, Taebaek, 
Gangneung, Jecheon, Chungju, and Jeongeup (not shown). This amount 
of snowfall exceeds past heavy snow events, indicating that heavy snow 
damage may occur in these vulnerable cities. Among the scenarios, 
RCP2.6 and RCP8.5 show the highest projected snowfall in the 2070 s 
and 2090 s, and RCP4.5 and RCP6.0 show the highest projected snowfall 
in the 2020 s and 2030 s. The projected snowfall is expected to increase 
compared to the current average (10.3 cm). However, in all scenarios 
except RCP2.6, the projected peak snowfall tends to decrease overall 
(see trendlines of Fig. 4) because the maximum and minimum temper
ature factors used in machine learning increased in the future. Increased 
precipitation may contribute to the increase in snowfall due to climate 
change, but the projected snowfall also tends to decrease gradually 
because the temperature increases and the number of occurrences below 
the freezing point decreases (Kim et al., 2014). Based on our analysis 
using RCP climate change scenarios, it is projected that the average 
annual snowfall will decrease in the future, but the tendency for heavy 
snowfall will increase. It is important to note that only one regional 
climate model was employed in this analysis, and the RCP scenario itself 
entails inherent uncertainties. 

Table 6 
Comparative statistics of projection models.   

Criteria MAE(cm) RMSE(cm) R2 

Models     
MLR  2.32  4.22  0.45  
SVR  1.73  3.91  0.53  
RFR  1.65  3.35  0.64  
XGB  1.64  3.44  0.62   

Fig. 3. Correlation of observed and projected snowfall results from (a) MLR, (b) SVR, (c) RFR, (d) XGB.  

M.-S. Song et al.                                                                                                                                                                                                                                



Climate Services 33 (2024) 100440

8

Fig. 4. Projected peak snowfall according to RCP scenarios (a) RCP2.6, (b) RCP4.5, (c) RCP6.0, and (d) RCP8.5.  
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Image clustering of the areas vulnerable to heavy snowfall 

Considering the prediction results for each scenario, extreme snow
fall (48.2 cm) occurred a similar number of times. Compared to the 
complete set of RCPs, RCP8.5 corresponds to the pathway with the 
highest levels of greenhouse gas emissions (Riahi et al., 2011). Subse
quently, clustering analysis was conducted on the 8.5 scenario, which is 
recognized as the most severe scenario. The 80 annual snowfall pro
jection images were clustered into 5 groups and categorized into 10 
levels, aligning with the characteristics of RGB values in GIS. These 
levels ranged from the annual minimum value of 1.212 cm to the annual 
maximum value of 131.6 cm. The categorization included standards 
such as 3 cm for highway snow removal operations, 5 cm for snowfall 
advisories, and 20 cm for snowfall warnings. Raster images within each 
group were averaged using GIS spatial analysis to create a representative 
image for the group. The representative image for each group can be 
seen on the right side of Figs. 5–9. These images are categorized into 10 
levels, ranging from the minimum value of 1.82 cm to the annual 
maximum value of 56.41 cm. 

In Fig. 5, Group (1) was identified as a vulnerable distribution type 
for Chungcheongbuk-do and Gangwon-do. This group exhibited rela
tively high projected snowfall (Grades 7 to 8), which corresponds to 
more than 15 cm of snowfall. This level of snowfall is in line with the 
criteria for issuing heavy snow warnings in South Korea. In Fig. 6, Group 
(2) was identified as a vulnerable distribution group in Jeollabuk-do and 
Gangwon-do. This group exhibited relatively high projected snowfall 
(Grades 6 to 7), which corresponds to 10 cm or more of snowfall. In 
Fig. 7, Group (3) was identified as a nationwide distribution type. This 
group exhibited relatively low projected snowfall (Grades 1 to 4). It 
contained the largest number of images among the groups. The mini
mum projected snowfall within this group was observed in 
Gyeongsangbuk-do, with projected snowfall distribution being less than 
3 cm. This aligns with the starting standard for snow removal work in 
South Korea. In Fig. 8, Group 4 was identified as a vulnerable distri
bution group in northern Gyeonggi-do. This group exhibited relatively 
high projected snowfall, falling within Grades 7 to 8. It is noteworthy 
that significant snowfall is expected in areas outside of Gangwon-do. In 
Fig. 9, Group 5 was identified as a vulnerable distribution group in 
Gangwon-do, encompassing the maximum projected snowfall (131 cm) 
from the scenario predicted for the year 2091. This group represents 
areas in Gangwon-do with the highest expected snowfall levels, ranging 
from Grades 8 to 10. 

Conclusions 

This study was conducted to project the areas and periods vulnerable 

to heavy snowfall as the damage caused by snowfall increases. A heavy 
snow projection model using machine learning was developed, and 
heavy snowfall image clustering was performed for the RCP8.5 scenario 
using GIS and K-means clustering. The snowfall projection model was 
developed according to the following steps. Independent variables were 
selected by analyzing previous studies, and data collection was per
formed by considering the meteorological and geographic factors 
collected through the ASOSs in South Korea. Data pre-processing was 
performed, and the pre-processed data were learned using the MLR, 
SVR, RFR, and XGB machine learning algorithms. The machine learning 
algorithms with good performance and widely used algorithms in pre
vious studies were selected as the regression models for projection 
purposes. The predictive model using the RFR algorithm had the optimal 
performance (R2 = 0.64) based on a comparison between the observed 
and projected data. The distribution of snowfall up to 2100 was pro
jected by applying the RCP scenario to the RFR model, selected as the 
optimal model. Due to examining the heavy snowfall trends for each 
scenario, RCP2.6 and RCP8.5 showed the highest snowfall (116.6 cm 
and 131.6 cm) after the 2060 s, and RCP4.5 and RCP6.0 showed the 
highest snow cover (107.7 cm and 117.8 cm) before the 2060 s. The 
snowfall trend decreases toward the future, which was analyzed to 
decrease as the temperature factor used in the projection model in
creases due to the influence of global warming. In addition, K-means 
clustering analysis was performed to identify vulnerable areas with the 
projection model using RCP8.5 and the yearly snowfall images derived 
through GIS processing. Through image clustering, vulnerable areas 
were clustered into five groups, including Gangwon-do, Jeollabuk-do, 
and Gyeonggi-do. It is meaningful because it grouped similar vulnerable 
areas by year using time-series image data. Understanding each group’s 
clustered year and vulnerable areas and the change in snowfall patterns 
is imperative in planning a response plan to minimize the risk of heavy 
snow. Therefore, local governments and public agencies that manage 
infrastructure in these three vulnerable areas should consider estab
lishing measures to deal with heavy snow disasters. 

Snowfall is a nonlinear process in which meteorological and 
geographic variables such as precipitation, temperature, relative hu
midity, wind speed, wind direction, latitude and longitude are corre
lated. Additionally, the projection results may vary depending on the 
regional research scope and characteristics of the input variable data 
used for model development. The meteorological factors were provided 
as daily data when used as input variables in this study. Since the daily 
average observation data were used as input data for the meteorological 
factors rather than the data when the heavy snowfall occurred, the 
performance of the projection model was relatively low (Park et al., 
2016). Particularly, when predicting future snowfall using climate 
change RCP scenario data, improving the predictive power of the model 

Fig. 5. Group (1): Group of Chungcheongbuk-do and Gangwon-do.  
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Fig. 6. Group (2): Group of Jeollabuk-do and Gangwon-do.  

Fig. 7. Group (3): Group of national distribution with relatively low projected snowfall.  

Fig. 8. Group 4: Group of northern Gyeonggi-do.  
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is difficult considering the uncertainty of the scenario. We recognize the 
potential benefits of employing multiple RCM models for uncertainty 
assessment, and we encourage further research in this direction to 
enhance the reliability of snowfall projections in South Korea. There
fore, the continuous development and validation of predictive models 
remain of utmost importance. Given the inherent uncertainties associ
ated with climate projection models and RCP scenario data, it becomes 
imperative to enhance and validate our projection models persistently. 
This can be achieved through incorporating high-resolution satellite 
imagery, diversification of learning factors, and advancements in algo
rithms, all essential for bolstering the reliability of future projection 
results. 

Heavy snowfall disasters adversely affect national infrastructure, 
such as highways. Thus, it may appear as a problem due to the paralysis 
of transportation functions in South Korea and is not limited to the 
vulnerable areas of this study. In the future, this study’s results will help 
establish policies to respond to heavy snow disasters for transportation 
infrastructures, such as highways, roads, airports, and rail lines. 
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Appendix 1 

Regression metrics 

Several criteria were used to evaluate the performance of the regression models. The accuracy of the model was compared and verified using the 
MAE, RMSE, and R2 values (Guo et al., 2021). The MAE is the arithmetic mean of the absolute value of the difference between the measured and 
estimated values. The MAE has high applicability if it has a value close to zero. The low RMSE values demonstrate that the error of the estimation 
model was small. In this study, it was used to indicate the suitability of estimating high snowfall (Hamidi et al., 2018). R2 measures the linear 
relationship between the observed and estimated snowfall and has a value of 0 to 1. An R2 value close to 1 indicates optimum model applicability. The 
MAE, RMSE, and R2 values were calculated using Eqs. (1), (2), and (3). 

MAE =
1
m

∑m

i=1
|Xi − Yi| (1)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m

∑m

i=1
(Xi − Yi)

2

√

(2)  

Fig. 9. Group 5: Group of Gangwon-do with the highest projected snowfall.  
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R2 = 1 −
∑m

i=1(Xi − Yi)
2

∑m
i=1(Y − Yi)

2 (3) 

where Xi is the projected ith value, and Yi is the actual ith value. The regression method predicts the Xi element for the corresponding Yi element in the 
observation dataset (Chicco et al., 2021). 
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