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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Climate trend and mean estimators are 
assessed with a criteria-based approach. 

• Local linear regression is especially 
promising in describing climate trends 
and means. 

• Ideas for novel climate services in an 
operational setting are presented. 

• There is a need for international rec
ommendations to improve climate 
services.  

A R T I C L E  I N F O   

Keywords: 
Climate monitoring 
Current climate mean 
Trends 
Climate change 
Local linear regression 
Criteria-based assessment 

A B S T R A C T   

Describing the climate evolution using trend lines and estimating the current climate mean (CCM) on the local 
scale is an important climate service. For an increasing number of variables, accelerating climate change dis
qualifies the use of traditional climatological normals and long-term linear trends as CCM estimators. Although 
several alternatives are available and already in use, there are few comprehensive assessments of the different 
approaches let alone a consensus for recommending a particular method. Here we evaluate frequently used 
approaches that use past climate data to estimate the CCM applying several transparent criteria. The performance 
is assessed in a perfect model framework for the strongly changing Swiss mean temperature 1864–2099 with the 
centered 30-year mean as CCM benchmark. Short-term linear trends, cubic splines and local linear regression 
with optimized parameters all provide unbiased CCM estimates for a broad range of climate evolutions and 
independent of trend magnitudes. To enable broad usability, additional criteria are considered such as a wide 
applicability to a large number of climate variables and simplicity in terms of use, settings and communication. 
In the overall assessment, local linear regression emerges as a particularly promising method to describe 
nonlinear climate trends and to determine the CCM. The criteria-based assessment approach has proven very 
useful in choosing a method as objectively as possible. We present ideas for modern climate services to com
plement the toolbox of climate monitoring and encourage the community to develop recommendations at the 
international level to increase the coherence, objectivity and robustness of climate monitoring products.  
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1. Introduction 

Estimating the current climate mean (CCM) is a core task of climate 
monitoring and an important climate service. It can for example be used 
to classify climate anomalies and to determine change signals. A 
prominent application is the question when the global 1.5 or 2 ◦C target 
are reached (United Nations, 2015; Trewin, 2022; Betts et al., 2023). 
Traditionally, averages computed over at least 30 consecutive years, so 
called climate normals, are used to define climate means (WMO, 2017). 
However, the concept of climate normals is based on the strong 
assumption of a stationary (i.e. “trendless”) climate within the averaging 
period. Due to anthropogenic climate change, this stationarity 
assumption is violated for an increasing number of variables such as 
temperature, absolute humidity, heavy precipitation or evapotranspi
ration in the last few decades (IPCC, 2021). As a result, the CCM based 
on past climate normals is increasingly biased. The problem has been 
widely discussed in the literature (e.g. Scherrer et al., 2006; Livezey 
et al., 2007; Milly et al., 2008) and by the World Meteorological Orga
nization (WMO; WMO, 2007) already more than fifteen years ago. For 
some years now, WMO has been recommending updating climate nor
mals frequently, at least every ten years (WMO, 2017). The literature, 
however, shows that further alternative approaches are desirable and 
can potentially help users make better informed decisions (cf. Livezey 
et al., 2007; Arguez and Vose, 2011; Wilks, 2013; Wilks and Livezey, 
2013; Krakauer and Devineni, 2015). A wide variety of approaches were 
proposed under the terms “optimal”, “non-stationary”, “supplemental” 
or “new” normals. Livezey et al. (2007) evaluated several approaches, 
including an adjustment of the averaging period (so-called “optimal 
climate normals”) and an estimation using “piece-wise” linear trends 
(so-called “hinge fits“). At that time, these worked reasonably for the 
past range of trends on a regional and local level. Arguez and Vose 
(2011) summarized possible alternatives and Arguez et al. (2013) pre
sented a set of approaches, from which seven were implemented oper
ationally at the US National Oceanic and Atmospheric Administration 
(NOAA) as “supplemental normals” in addition to the WMO normals. 

Practical implications  

Estimating the current climate mean (CCM) is a core task of 
climate monitoring and an important climate service. It is used to 
classify climate anomalies and to determine change signals. A 
prominent application is the definition of the time at which the 
global 1.5 or 2 ◦C target is reached (United Nations, 2015; Trewin, 
2022; Betts et al., 2023). It is traditionally determined using av
erages computed over 30 consecutive years, so called climate 
normals. Another important metric are temporal temperature 
trends, often expressed linearly in ◦C per century. However, 
intensifying and thus nonlinear climate change more and more 
disqualifies the use of long-term linear trends and climatological 
normals for this task. Both, the 30-year standard reference period 
recommended by the World Meteorological Organization (WMO), 
commonly used to estimate the CCM through averaging, and long- 
term linear temporal trends, used to describe climate evolution, 
reach their methodological limits in the present day climate that is 
characterized by a strong non-stationarity and nonlinear evolu
tion. For instance, using the WMO 30-year standard reference 
period to estimate the CCM (defined as the mean climate of the 
present year) is, by definition, at least 15 years out of date and may 
differ substantially from the “true” CCM. This example illustrates 
the need for additional methods suitable to deal with non- 
stationarity when estimating the CCM. A similar argument can 
be made regarding the estimation of linear climate trends in time. 
As climate evolution has shown to be highly nonlinear for many 
climate variables influenced by temperature (e.g. IPCC, 2021), the 
mathematical assumptions required when using a linear regres
sion model (independent and identically distributed residuals) are 
not met. 

In this study, we evaluate a range of commonly used methods to 
estimate nonlinear climate evolution and, based thereon, the 
CCM. This evaluation is contingent on a set of transparently 
defined criteria. The most obvious is performance, i.e. how accu
rate a certain method can describe the current mean using past 
data. Another important criterion is the compatibility with the 
climatological convention (e.g. 30-year averages). A method 
compatible with the convention is preferred over others if the 
methods perform otherwise similarly well. Further criteria relate 
to the questions whether the method can be applied to a wide 
range of climate variables and whether it is simple to calculate and 
to communicate. The use of multiple criteria beyond performance 
alone to select a method has proven to be powerful. It can be 
applied to select methods in general, but the criteria are not uni
versal. They need to be defined depending on the purpose and 
context of the analysis (cf. Keizer et al., 2023). 

Here, we present the method that proved most suitable for the 
intended purpose: a smooth nonlinear climate trend based on local 
linear regression (1st order LOESS with a 42-year window). It 
proved suitable to estimate both nonlinear climate trends and the 
CCM in a changing climate on the global, regional and local scale 
and is thus an excellent candidate to provide robust and coherent 
long-term climate monitoring products. Very similar approaches 
to model nonlinear trends have been recently promoted in the 
literature (e.g. Hawkins et al., 2020; Clarke and Richardson, 2021; 
Cheng et al., 2022). The climate trend based on local linear 
regression describes the nonlinear long-term climate evolution of 
temperature very well and is a good option to replace long-term 
linear trends, in which the temperature evolution is usually 
modeled only as a function of time. The representation of smooth 
nonlinear climate evolutions is attractive for visualization pur
poses and dashboards (e.g. the KNMI climate dashboard at 
https://www.knmi.nl/klimaat). Also the multi-annual climate 
variability can be attractively represented using shorter smooth
ing windows for example with a 14-year window to trace the 10- 
year moving average. 

There are many potential applications of the CCM to complement 
the traditional climate monitoring toolbox. It is potentially useful 
to classify weather and climate extremes more accurately with 
respect to the current conditions. Gubler et al. (2023) apply a 
similar concept to daily temperature extremes. It can also be used 
to compute up-to-date change signals using differences between 
the values of the climate trend for an end and a start time point. 
Interesting, but more challenging, is the communication of 
anomalies with respect to the CCM instead of deviations from 30- 
year normals as widely done in climate bulletins and reports 
today. Since the CCM, i.e. the reference, changes every year, the 
same value (in absolute terms) would result in a different anomaly 
every year, and thus change the way anomalies are used and 
communicated substantially. Therefore, a careful consideration of 
the benefits and risks of the application of the methods is neces
sary to decide whether it might be worth taking this step. We also 
want to stress that classical climate normals still have their justi
fication in several areas and no complete replacement is suggested 
here. 

We encourage the climate service community to initiate discus
sions and develop recommendations at the international level on 
how to estimate trends and the CCM in a strongly changing 
climate (i.e., through working bodies of the World Meteorological 
Organization). A harmonization of methods and communication 
procedures would significantly increase the comparability and 
objectivity of climate monitoring results and strengthen the 
coherence and robustness of climate service products.   
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Wilks (2013) and Wilks and Livezey (2013) showed that the choice of 
the best method strongly depends on the magnitude of the trend. 

An alternative option to estimate the CCM is fitting a smooth trend 
line to the data and use the last time step of the smoothed series as CCM 
estimate. Some time ago, Mann (2004, 2008) proposed an elaborate 
method that adaptively weights boundary constraints to optimize the fit 
yielding an accurate representation of long-term warming trends also at 
the time series boundaries. More recently, Rigal et al. (2019) presented a 
statistical model based on cubic splines which showed negligible biases 
even for strong future warming. Steinacker (2021) suggested a mean 
value smoothing spline to estimate the climatic trend. De Valk (2020) 
proposed a trend line based on weighted local linear regression, the first 
order implementation of LOESS (cf. Cleveland, 1979; Cleveland and 
Devlin, 1988). Climate trend lines with a very similar configuration have 
recently been promoted by Hawkins et al. (2020) and Clarke and 
Richardson (2021) to monitor global mean temperature and by Cheng 
et al. (2022) to describe the evolution of the ocean heat content. Also, 
the National Aeronautics and Space Administration (NASA) uses the 
approach to visualize the evolution of their global temperature data set 
GISTEMP but with a narrower 5-year bandwidth (e.g. Lenssen et al., 
2019). The European Copernicus Climate Change Service (C3S) applies a 
moving 30-year linear trend to estimate the CCM in its global temper
ature trend monitor (C3S, 2021). In the Sixth Assessment Report, the 

Intergovernmental Panel on Climate Change (IPCC) started to commu
nicate the CCM of temperature via the average of the last available 10 
years (IPCC, 2021). 

In this paper, we assess nine frequently used approaches that use past 
climate data to estimate the CCM on the regional to local scale. To 
ensure a broad applicability, a multiple criteria-based selection 
approach is adopted. Several transparent criteria are defined and 
assessed to come up with a recommended method. A central criterion is 
performance with respect to a centered 30-year benchmark using com
bined observational and climate scenario data. This is determined to a 
large degree by the methods ability to correctly represent fast climate 
changes and should ensure the applicability of the method in the de
cades to come. Further criteria include whether the method can be 
applied to a wide range of climate variables, and are simple to calculate 
and communicate. We present performance results and discuss the op
tions based on the assessment including all additional criteria. We then 
give some examples for the preferred approach that has been opera
tionally implemented by the Royal Netherlands Meteorological Institute 
KNMI and will be implemented by the Federal Office of Meteorology and 
Climatology MeteoSwiss in 2024 to complement the current climate 
monitoring soon. Ideas of potential climate services based on the CCM 
are shortly discussed. We close with a conclusion and a short outlook of 
possible next steps. 

Fig. 1. Schematic illustration of some options to estimate the CCM using past data for a strongly changing climate variable (e.g. temperature). ① long-term (e.g. 30- 
year) mean, ② short-term (e.g. 10-year) mean, ③ linear fit over a recent time period and ④ smooth nonlinear estimate. The filled circles show observed values, the 
open circles show predictions for the future. The benchmark used in this study is the centered 30-year mean (filled green circle) using a combination of 15 years of 
past and 15 years of future data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Approaches to estimate the CCM assessed in the present work with some methodological details and examples of their usage (not an exhaustive list). The approaches in 
italic are only applied for the observational period 1864–2020. Further technical details are given in the Appendix A (Table A1).  

Approach Description e.g. used by/in 

MA30.upd.10 30-year means updated every 10 years WMO (2017), Kaspar et al. (2023) 
MA30 30-year means updated annually MeteoSwiss reports 
MA10 10-year means updated annually NOAA, IPCC (2021), Kaspar et al. (2023) MeteoSwiss website 
KS15 Gaussian kernel smoother (bandwidth = 15 years, optimized) MeteoSwiss reports 
LT30 Linear trend fit (last 30-year data, updated annually) Copernicus Climate Service (C3S, 2021) 
SP6 Cubic spline smoother (degree of freedom, df = 6) Rigal et al. (2019) 
LO42 Local linear regression smoother (1st order LOESS), 42-year window, tricube weighting scheme KNMI (de Valk, 2020), Clarke and Richardson (2021) 
LM.GMT Linear model, predictor: LOESS smoothed global temperature Hawkins et al. (2020) 
LM.NHLT Linear model, predictor: LOESS smoothed northern hemisphere land temperature Gubler et al. (2023)  
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2. Methodology and data 

2.1. CCM approaches 

There are many ways to estimate the CCM using past climate data. 
Fig. 1 visualizes some possibilities for an arbitrary climate variable with 
a positive nonlinear trend. A good example is near surface air temper
ature that currently behaves like this in most regions of the world. It 
illustrates the considerable differences between the approaches. Nine 
commonly used approaches are discussed in this paper. They are listed 
in Table 1 and include the periodically updated 30-year mean (M30. 
upd.10) recommended by WMO, two moving averages (MA30 and 
MA10), a moving linear trend (LT30), a Gaussian kernel smoother 
(KS15), a cubic spline (SP6), a locally weighted linear regression (LO42) 
and two linear models using large-scale temperature as predictor (LM. 
GMT and LM.NHLT). 

The configurations of these methods were determined by already 
established configurations and guidance based on the CCM error 
behavior (with respect to a centered 30-year mean benchmark) for 
regional temperature in the past and future (cf. Appendix A for details). 
For most approaches the optimized parameters turned out to be 
reasonably close to the established ones. We thus use the latter in this 
paper (cf. Table 1). For the kernel smoother, no well-known configura
tion exists and the error-optimized configuration is used. In contrast to 
the other seven approaches, LM.GMT and LM.NHLT are calculated by 
linearly scaling large-scale temperature. This potentially allows 
modeling some nonlinearities in the time series (e.g., Gubler et al., 
2023). Note that the performance analysis for LM.GMT and LM.NHLT is 
restricted to the observational period 1864–2020 because future infor
mation on global temperature is not available in the regional scenario 
data used in this study (cf. data section). 

2.2. Evaluation criteria 

From the perspective of a climate service provider, there are several 
criteria that determine a “good” method for estimating the CCM. An 
important overall criterion analyzed in detail in this study is “perfor
mance”. It measures how good a method can estimate the CCM with 
respect to a benchmark (see performance metrics section for details). 
Hence, the benchmark or more general, the compatibility of a method 
with convention is a crucial criterion which strongly determines if a 
method performs well. Other criteria that contribute to a good perfor
mance are whether the estimates are local in time, i.e. only depend on 
the values reasonably close to the year in question and whether the 
method is flexible enough to represent trends at the end of the sequence 

reasonably well. Further important criteria are whether the method can 
be applied to a large range of climate variables and indices and whether 
it is easy to explain and compute. 

Table 2 gives an overview of the above criteria. The criteria are 
essentially the same to assess to suitability of climate trend lines to 
describe the evolution of climate series (cf. de Valk, 2020). We use the 
six criteria including performance as basis to rate the different CCM 
approaches. Note, that the criteria to apply depend on the problem and 
they might differ from those applied in this study. The availability of 
information on the uncertainty of the CCM estimates is a plus but can in 
principle be computed numerically using bootstrap methods (cf. Efron 
and Tibshirani, 1994) for all methods. We therefore decided not to use it 
as formal criterion in this study. 

2.3. Data 

The main climate variable analyzed in this study is the strongly 
changing near surface air temperature. We mainly focus on regional 
temperature on the annual time scale. The testbed is Switzerland, a 
central European country with complex topography covering an area of 
about 41,300 km2. For the past (1864–2020) we use the Swiss mean 
temperature data set introduced by Begert and Frei (2018). It is freely 
available in monthly and annual resolution and operationally updated to 
the present. The series is characterized by a strong nonlinear trend and 
large interannual variability. To test how the CCM approaches perform 
in a future climate, the observations are combined with climate scenario 
data from the current Swiss climate scenarios CH2018 (CH2018, 2018; 
Fischer et al., 2022) which are based on EURO-CORDEX regional climate 
model simulations (cf. Jacob et al., 2014, 2020). A total of 45 simula
tions from three different emission scenarios are considered (8 “low- 
emission” simulations (RCP2.6), 16 “intermediate-emission” simula
tions (RCP4.5) and 21 “high-emission” simulations (RCP8.5), see 
Appendix B for details). The raw EURO-CORDEX regional climate model 
data, available for the period 1981–2099, were downscaled and cor
rected for systematic distributional biases of daily data using quantile 
mapping (Feigenwinter et al., 2018). The observational time series 
covering the past (1864–2020) is simply concatenated with the 45 bias 
corrected climate model realizations (2021–2099) to create 45 contin
uous 236 year time series for the period 1864–2099. The combined time 
series mostly show a reasonable gradual evolution around the year 2021 
where the observational and scenario data sets have been concatenated. 
HadCRUT5.0.1.0 global mean temperature (Morice et al., 2021) is used 
for the LM.GMT and CRUTEM.5.0.1.0 northern hemispheric land tem
perature (Osborn et al., 2021) for the LM.NHLT approach. Additional 
data sets from different data sources are used for the application ex
amples (see Fig. 4 legend for details). 

2.4. Performance metrics 

The 45 combined observational and scenario temperature time series 
for the period 1864–2099 are used to test the performance of the 
different CCM approaches. As CCM benchmark (BM), a centered 30-year 
mean is used. The 30-year window ensures compatibility with clima
tological convention and is not challenged in this paper. The CCM error 
is defined as Ti,m(t)-Ti,BM(t), where Ti,m(t) is the CCM estimate of 
approach m (1…9) for simulation i (1…45) in year t (1900…2084) using 
only information from the past (i.e. up to year t) and Ti,BM(t) is the 
centered 30-year mean benchmark for simulation i in year t using 15 
years of data from the past and 15 years of data from the future. Until the 
year 2020, the input data is observations, after 2020 it’s data from 
climate projections. We analyze the CCM and CCM error time series, 
biases (mean errors over a certain time period) and the error variance 
(standard deviation of the CCM error) for the different approaches. The 
CCM error variance is also compared with the BM 95 % confidence in
terval which is roughly approximated applying a simple one-sample t- 
test confidence interval (Student, 1908). 

Table 2 
Criteria used to assess measures to compute the current climate mean (CCM) and 
climate trend lines. Adapted and extended from de Valk (2020).  

# Criterion  Description 

C1 compatibility with 
convention 

C6 
PERFORMANCE 

1) Estimate is a good predictor for 
the centered 30-year average. 2) 
The variance matches the one of 
the centered 30-year average. 

C2 local in time Estimates depend only on the data 
reasonably close to the year 
concerned 

C3 flexibility Can represent fast climate changes 
(i.e. any trend line shape) 

C4 wide applicability  Can be easily applied to most 
climate variables and indices (e.g. 
bounded and count variables) 

C5 simplicity  Is simple to explain to a wide 
audience and simple to compute 
(no settings need to be made by 
user)  
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3. Performance analysis 

3.1. CCM estimates and error series 

Fig. 2 shows the CCM series (left panels) and the CCM error series 
(right panels) from the early 1900s to the late 21st century for all ap
proaches. The WMO normal approach (M30.upd.10) works reasonably 
well until the 1970s but shows very strong negative biases up to 1 ◦C in 
the last decades (cf. also Scherrer et al., 2006). The main reason for this 
is the large temperature increase in this period. M30.upd.10 is lagging 
the CCM benchmark by 15 years and is representative for the mean 15 
years before present but not for the end of the series (“current” climate). 
Since the values are updated only every 10 years, the error curve is 
zigzagged with the smallest errors following an update and the largest 

errors just before an update. The errors further increase in the future for 
the high-emission scenario due to its increasing rate of warming. For the 
intermediate-emission scenario, the errors stay roughly constant in the 
coming decades. For the low-emission scenario with a clearly decreasing 
rate of warming, the errors are currently at a maximum and decrease 
towards zero in the second half of the 21st century. Apart from not 
zigzagging, the moving 30-year normal MA30, which has been used by 
MeteoSwiss until recently to communicate change signals, performs 
only slightly better than M30.upd.10 with negative errors up to 0.7 ◦C in 
the last decades. 

Shortening the moving average window helps to reduce the mean 
bias considerably without increasing the error variance a lot. However, 
also for MA10, as used in the recent sixth IPCC assessment report (IPCC, 
2021), and also for the Gaussian kernel smoother KS15, there is a 

Fig. 2. CCM series (left panels a,c,e) and CCM error series (right panels b,d,f) for the nine approaches (colored lines) listed in Table 1 from the early 1900s to the 
2080s. See legend inset for color key. Left panels: The centered 30-year mean benchmark is shown as a bold black line, the annual observations 1864–2020 as a thin 
gray line. The colored bands show the 90 % uncertainty range of the 21 high-emission scenario runs (panels a,b), 16 intermediate- scenario runs (panels c,d) and 8 
low-emission scenario runs (panels e,f) for the period after the year 2005. The gray band (panels b,d,f) shows the approximate 95 % confidence interval of the 
centered 30-year mean benchmark. Until 2005, the error is based on observations only. Between 2006 and 2020, it is a combination of observations and scenario 
data. After 2020, the estimate is solely based on scenario data. The thin lines show an example realization of the MIROC5-RCA4 model chain. 
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systematic negative bias in the order of 0.2–0.3 ◦C in times with strong 
trends. The moving 30-year linear trend fit LT30, the cubic spline SP6 
and the LOESS smoother LO42 show even smaller biases in the near past 
and future. Note however, that all these approaches show substantial 
biases in the early 1950s, a few years after the 1940s local temperature 
peak and in the 1980s, after the local temperature minimum in the 
1970s. LM.GMT and LM.NHLT perform very well. This is not surprising, 
as the predictor and predictand series are subject to similar non
linearities which cannot be modeled well with (linear) time as only 
predictor. The errors have the same sign as those of the other methods 
though. This shows that also these approaches cannot predict the 
reversal of trends reasonably. To achieve this, skillful predictions of the 
near future, so called decadal predictions (e.g. Boer et al., 2016) would 
be necessary. For the future, LT30, SP6 and LO42 all show relatively 
small biases for all climate scenarios considered. Although there are 
short periods with larger errors, they mostly stay within the approxi
mated 95 % confidence interval of the BM (Fig. 2, gray band) which 
amounts to about ±0.2 ◦C in the observation period and up to ±0.3 ◦C in 
the scenario period. 

3.2. CCM error statistics 

Fig. 3 summarizes the error statistics for the nine candidate ap
proaches aggregated for the recent past (1957–2020) and the three 
different climate scenarios analyzed for the next several decades 
(2021–2084). As Fig. 2 already suggested, M30.upd.10 and MA30 are 
strongly negatively biased in the past. Small past negative biases are also 
found for MA10 and KS15, while LT30, SP6 and LO42 are almost un
biased. In the future, M30.upd.10 and MA30 are still heavily biased, but 
the bias strongly depends on the scenario with much larger bias for 
RCP8.5 than RCP4.5 and RCP2.6. MA10 and KS15 perform well for 
RCP2.6 (cf. also Fig. A1 and Table A2), but tend to have a considerably 
negative bias for RCP4.5 and RCP8.5 up to − 0.3 ◦C. Kernel smoothing 

biases near the time series end are a well-documented feature in the 
statistical literature (e.g. Gasser and Müller, 1979; Hart and Wehrly, 
1992). LT30, SP6 and LO42 show small median biases for all scenarios 
with errors mostly smaller than ±0.1 ◦C. For the past, LM.NHLT shows 
the smallest bias (-0.01 ◦C) and also the LM.GMT bias is quite small 
(-0.11 ◦C). 

To get a feeling for the range of the errors for individual parts of the 
time series, the error variance can be used. It is expressed here simply as 
standard deviation of the errors (large dots in Fig. 3). MA30.upd.10 and 
MA30 perform poorly, especially in the past with values of 0.37 and 
0.29 ◦C respectively. The smallest value is found for LM.GMT (0.09 ◦C). 
For the other approaches, values between 0.15 and 0.22 ◦C are found. 
Note that the LM.NHLT value is relatively high (0.20 ◦C). The very small 
LM.NHLT bias thus comes with the price of higher error variance. For all 
approaches, the values for the future are similar to those for the past. 

An additional quality measure is the comparison of the errors with 
the uncertainty of the benchmark. For LT30, SP6 and LO42, 82–89 % of 
the errors for the future period stay within the 95 % confidence interval 
of the benchmark. Note that the LT30 and LO42 error evolution and 
statistics are very similar. The reason is the way LO42 is constructed. 
The linear term in the local regression leads to an approximately linear 
behavior near the end of time series and to a similar CCM estimate as the 
one of LT30 (cf. de Valk, 2020). 

4. Evaluation and choice of method 

To help identify the most suitable approaches to estimate the CCM, 
we evaluate the six criteria C1-C6 listed in Table 2. A categorical rating 
(positive “+”, neutral “⋅” or negative “− ”) is issued for each combination 
of criterion and approach and presented in Table 3. It should be 
mentioned, that the rating is not a fully objective for every criterion/ 
approach combination, but the evaluation of all six criteria together 
allows to make a relatively objective method selection. 

Fig. 3. CCM error statistics for different time periods and the approaches presented in Table 1. Shown are results for the past (1957–2020) in light blue and for the 
future (2021–2084) in green (low-emissions RCP2.6), in orange (intermediate emissions RCP4.5) and red (high-emissions RCP8.5). The errors are given as boxplots 
(median in black, box: 25th to 75th percentile, whiskers: max(min error; 25th percentile minus 1.5 times the interquartile range) to min(max error; 75th percentile 
plus 1.5 times the interquartile range) as lines and outliers as dots). The standard deviation of the errors are depicted as filled circles. The gray band shows the 
approximate 95 % confidence interval of the centered 30-year mean benchmark. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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Fig. 4. Example evolution and CCM estimates of six regional and local climate variables in Switzerland and the Netherlands. a) annual Swiss mean 2 m temperature 
since 1864, b) annual mean sea level in the Netherlands (mean of six Rijkswaterstaat gauges) 1890–2021, c) annual precipitation sum in Zürich since 1864, d) 
precipitation deficit (maximum of cumulative potential evaporation minus precipitation from April to September, cf. Beersma and Buishand, 2004) in the 
Netherlands since 1906, e) annual sunshine duration in Bern since 1887, f) annual absolute humidity in Genève since 1959. The annual values are shown as thin black 
lines. The red line and the pink area show the LO42 climate trend line and its 95 % confidence interval. The red dot and the numbers show the climate mean estimate 
at the end of the series with the 95 % confidence interval given as numbers. The 30-year moving average (MA30) is shown as a semi-bold black line. The green lines 
and numbers are the normals 1991–2020 (MA30.upd.10), the dashed horizontal line shows the 1871–1900 (pre-industrial) mean where available. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 3 
Evaluation of the criteria C1–C6 (Table 2) for the approaches listed in Table 1. A positive behavior is rated with a plus (+), a negative behavior is rated with a minus 
(− ). If the behavior is neutral or average, the rating is a dot (⋅). The performance row is in bold because it is the main criterion analyzed in detail in this study. The 
performance ratings of LM.GMT and LM.NHLT are put in parentheses because they were only assessed for the past.  

Criterion M30.upd.10 MA30 MA10 KS15 LT30 SP6 LO42 LM.GMT LM.NHLT 

C1 compatibility with convention + + − + ⋅ ⋅ + ⋅ ⋅ 
C2 local in time ⋅ ⋅ + + ⋅ ⋅ + + +

C3 flexibility − − ⋅ ⋅ + + + + +

C4 wide applicability + + + + + + + − −

C5 simplicity + + + ⋅ ⋅ ⋅ ⋅ − −

C6 PERFORMANCE ¡ ¡ ⋅ ⋅ þ þ þ (þ) (þ)  
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M30.upd.10, MA30 are compatible with the convention (C1) except 
at the boundaries of the time series. LO42 and KS15 were constructed to 
meet the convention as closely as possible. MA10 can deviate quite 
substantially from a 30-year mean and is rated negative. The other ap
proaches are rated neutral. MA30, M30.upd.10, LT30 and SP6, for which 
the coefficients are estimated using the whole time series (globally), are 
not very local (criterion C2). They are all rated neutral. The other ap
proaches are reasonably local and get a positive rating. Concerning 
criterion C3 (flexibility), MA30 and M30.upd.10 are not responsive to 
rapid changes and are given a negative rating for flexibility. MA10 and 
KS15 somewhat lag the evolution in certain cases. They are rated 
neutral, while all other approaches are flexible and get a positive rating. 
Concerning criterion C4 (wide applicability), LM.GMT and LM.NHLT 
are rated negative, since large scale temperature is not necessarily a 
good predictor for an arbitrary variable on the local and regional scale. 
The other approaches are easily applicable to most variables and are 
rated positive. In terms of simplicity (C5), LM.GMT and LM.NHLT are 
rated negative since global scale data is needed and the procedure is not 
trivial to explain to the general public. M30.upd.10, MA30 and MA10 
are easy to compute and communicate and thus rated positive. KS15, 
LT30, SP6 and LO42 are categorized as neutral, as the calculation is 
somewhat more demanding than the calculation of simple arithmetic 
means, but it can be explained relatively easily as a “smooth curve”. The 
performance criterion C6 is based on the performance analysis with 
respect to temperature presented above. LT30, SP6 and LO42 are high 
performers in the past and during the 21st century and get a positive 
rating. LM.GMT and LM.NHLT also performed very well. Since they 
have been assessed here only for the past, they get a positive rating in 
parentheses. MA10 and KS15 are rated neutral for their mediocre per
formance, while MA30 and M30.upd.10 get a negative rating for their 

minor overall performance. 
Overall, LO42 scores best according to our criteria, closely followed 

by SP6 and LT30. Note that in Table 3, we evaluated merely the use-case 
of estimating the CCM. The approaches based on fitting a smooth 
nonlinear trend line have the additional advantage of being able to 
visualize the evolution of the time series in an attractive way. There is 
one more additional benefit of LO42 in this group of approaches. It 
matches the variance of the centered 30-year average and has been 
constructed to be a smoothed version of this well-established climato
logical measure (cf. de Valk, 2020). Note that in principle also the spline 
approach could probably be configured to meet this criterion. Regarding 
all these aspects, it is attractive to choose local linear regression (LO42) 
as the preferred method to estimate the CCM. It is also an excellent 
climate trend line, e.g. for visualization purposes and can be used to 
produce several modern climate services, some of which we discuss in 
the next section. 

5. Climate services examples 

5.1. Trend lines, current climate mean and change signals 

Fig. 4 illustrates some examples using the LO42 climate trend lines 
and CCM estimates for regional and local scale climate variables in 
Switzerland and the Netherlands. In 2022, the Swiss mean temperature 
(Fig. 4a) reached a climate mean (CM) of 6.53 ± 0.37 ◦C (95 % confi
dence interval, assuming that the errors are normally distributed and 
independent). This is 0.72 ◦C higher than the current climate normal 
1991–2020, which also lies clearly outside the 95 % confidence interval. 
The 2022 CM estimate corresponds to a change signal of +2.67 ◦C with 
respect to the 1871–1900 mean, a proxy for the pre-industrial level (cf. 

Fig. 5. Evolution of the annual Swiss mean temperature 1864–2022 showing the climate trend line (green) and deviations from it (positive deviations in red, 
negative deviations in blue). Also shown are lines for the 16th and 84th (dashed lines) and the 2.5th and 97.5th (dotted lines) percentile of the deviations. The years 
with the five most positive and the five most negative deviations are labeled. For the year 2022, the observed mean, the CCM estimate, the deviation from the CCM 
including rank and the change signal with respect to the pre-industrial mean 1871–1900 are given. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 

Table A1 
Technical details on LOESS (LO), spline (SP) and kernel smoother (KS) approaches used. The table lists the R-function used and some configuration details (cf. 
Chambers and Hastie, 1992).  

Approach R-function Configuration 

LOESS (LO) loess() degree of the polynomial used: 1 (linear), span: window length/length of time series, weighting: tricubic, details: https://www.itl.nist.gov/ 
div898/handbook/pmd/section1/pmd144.htm 

cubic spline (SP) smooth. 
spline() 

fixed equivalent number of degrees of freedom df (trace of the smoother matrix) 

kernel smoother (KS) ksmooth() kernel: normalbandwidth: kernels (viewed as probability densities)  
are scaled so that their quartiles are at +/− ‘0.25*bandwidth’  
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Fig. A1. Annual Swiss mean temperature CCM bias (left panels, in ◦C), mean square error MSE (center panels, in ◦C2) and mean absolute error MAE (right panels, in 
◦C) of moving average (MA, first row), linear trend (LT, second row), kernel smoother (KS, third row), cubic spline (SP, fourth row) and 1st order LOESS (LO, fifth 
row) for different parameter choices (x-axis). Shown are the aggregated error measures using 64 end years of the past (1957–2020, black) and the future (2021–2084, 
RCP2.6: green, RCP4.5: orange, RCP8.5: red). The dots and the numbers in the center panels show the position and respective minima of the MSE. The vertical lines 
indicate the parameter implementation by other weather services (wMA = 10 years, wLT = 30 years, dfSP = 6, wLO = 42 years). For KS, SP and LO all years since 1864 
up to the year in question are used for the estimate. 

Table A2 
Lowest MSE values (in ◦C2) for the five CCM approaches MA, LT, KS, SP and LO for the past and future. The lowest MSE values per time frame are shown in bold, the 
highest MSE values are shown in italic. The optimized parameter for the lowest MSE values is shown in parenthesis.  

time frame \ method MA LT KS SP LO 

past (1957–2020) 0.049 0.046 0.045 0.039 (7) 0.044 
future (2021–2084) RCP2.6 0.022 (16) 0.036 0.022 (24) 0.038 0.035 

RCP4.5 0.053 0.030 0.050 0.031 0.028 (80) 
RCP8.5 0.109 0.043 0.101 0.044 0.041 (55)  
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Begert et al., 2019). In addition, the climate trend curve nicely tracks the 
nonlinear evolution of the Swiss mean temperature. Fig. 4b shows the 
evolution of the sea level in the Netherlands. The 2021 CM was about 27 
cm higher than the mean sea level at the beginning of the recordings in 
1890. In contrast to the temperature evolution, the change in time has 
been quite linear. The highly variable local annual precipitation at the 
station of Zürich/Fluntern is shown in Fig. 4c. The CM for 2022 is 
estimated as 1004 ± 116 mm. In contrast to the temperature example in 
Fig. 4a, the 95 % confidence interval includes the 1991–2020 climate 
normal value of 1108 mm suggesting that the normal is still a reasonable 
CCM estimate. The long-term evolution shows a small tendency for in
creases but a pronounced decline in the last 25 years. 

Fig. 4d depicts the evolution of the highly variable drought indicator 
“precipitation deficit” (maximum of cumulative potential evaporation 
minus precipitation from April to September, cf. Beersma and Buishand, 
2004) in the Netherlands since 1906. In the 20th century, the values 
have been relatively stable over time, fluctuating around 150 mm. In the 
last two decades however, there is a tendency towards increasing 
drought (larger deficits) with a 2022 CM of 200 ± 43 mm. In Fig. 4e, the 
highly nonlinear long-term evolution of local sunshine duration in Bern/ 
Liebefeld is shown. The 2022 CM of 2036 ± 106 h is considerably higher 
than the recent 1991–2020 normal (1797 h) and the climate trend line 
nicely traces the long-term evolution. Finally, Fig. 4f illustrates the 
strongly (nearly-linearly) increasing of absolute humidity in Genève/ 
Cointrin since 1959. It reached a 2022 CM of 7.97 ± 0.17 g m− 3, an 
increase of about 10 % in the period 1959–2022. 

In all cases, the LO42 climate trend line nicely illustrates the 
smoothed evolution regardless of whether it is linear or nonlinear. Note 
that the climate trend line (by construction) closely follows the 30-year 
moving average. It is also more representative for the temporally local 
behavior than the classical moving average which sometimes shows fast 
quite unrealistic year-to-year variability (e.g. Fig. 4d in the early 1960s). 

5.2. Alternative anomalies and event classification 

The deviation from the CCM – an alternative kind of anomalies – can 
be used to judge and classify events with respect to the climate condi
tions the event took place. This allows a fairer event classification than 
using anomalies with respect to the potentially biased classical normal 
values (cf. Gubler et al. (2023) classifying daily temperature extremes). 
The example for the annual Swiss mean temperature in Fig. 5 shows that 
the years with the most positive deviation from the CCM in decreasing 
order are 1947, 1961, 1994, 1921 and 1920. The years with the most 
negative deviation from the CCM are 1956, 2010, 1940, 1879 and 1941. 
The year 2022 is currently clearly the warmest year on record since 1864 
(around 0.5 ◦C warmer than the previous record holder 2018). It was 
0.88 ◦C warmer than the expected 2022 CM. Together with 1949 and 
1898, this is the sixth largest positive deviation from the climate trend 
line in the time series. The deviation approximately corresponds to the 
95th percentile in the distribution of the deviations. This relates to an 
approximate return period of about 20 years, making the year 2022 an 
exceptionally warm but not very extreme year in the current climate. 

6. Conclusions and outlook 

A transparent criteria-based assessment and method selection has 
been applied to estimate the current climate mean (CCM) in a changing 
climate based on past climate data. Besides performance, i.e. how close a 
method is with respect to a CCM benchmark based on climatological 
convention (i.e., a centered 30-year mean), we assess several additional 
criteria such as its flexibility to represent trends adequately, its wide 
applicability to a large range of climate variables and its simplicity in 
terms of use and communication. A carefully customized smooth 
nonlinear climate trend line based on local linear regression (1st order 
LOESS) turns out to be particularly promising in the overall assessment. 
It is already operationally used at KNMI (https://www.knmi.nl/klimaat) 
and will be implemented at MeteoSwiss in 2024 on an operational basis 
to complement the current climate monitoring products and climate 
services. Beside visualization purposes (e.g. trend lines in climate 
dashboards), potential modern climate services include the computation 
of up-to-date change signals, the classification of weather and climate 
extremes, or calculating an alternative kind of climate anomalies with 
respect to the climate trend line. Time will show which of the applica
tions presented here will prove themselves in operational use. In order to 
increase the comparability and objectivity of climate monitoring results, 
we strongly recommend in-depth discussions at the international level 
with the aim to better harmonize the current methods and procedures 
for describing climate trends and estimating CCMs. This study suggests 
that local linear regression is a potential candidate but additional ana
lyses are necessary to better determine its limitations. In the long-run, it 
would be interesting to define a regional/local current climate mean 
centered on today as recently proposed by Betts et al. (2023) to monitor 
the global 1.5 ◦C or 2 ◦C target. To achieve this goal, the recent obser
vations must be linked with reliable forecasts for the next 1–2 decades. 
Until this becomes possible on the regional/local scale, the local linear 
regression approach based on past observations – that we identify as the 
best performing method here – can be a good solution. 
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Table B1 
List of the 45 EURO-CORDEX simulations (RCM-GCM combinations) used. The 
ensemble includes 8 RCP2.6, 16 RCP4.5 and 21 RCP8.5 runs. 24 (21) runs have a 
horizontal resolution of 50 (12) km.   

EUR-11 (~12 km horiz. 
resolution) 

EUR-44 (~50 km horiz. 
resolution) 

RCM GCM RCM GCM 

RCP2.6 (8) HIRHAM5 EC-EARTH RACMO22E HadGEM2-ES 
REMO2009 MPI-ESM-LR RCA4 HadGEM2-ES 
RCA4 EC-EARTH RCA4 MPI-ESM-LR   

RCA4 MIROC5   
RCA4 NorESM1-M  

RCP4.5 (16) CCLM4-8-17 EC-EARTH RACMO22E EC-EARTH 
CCLM4-8-17 HadGEM2-ES RACMO22E HadGEM2-ES 
CCLM4-8-17 MPI-ESM-LR RCA4 CanESM2 
HIRHAM5 EC-EARTH RCA4 CSIRO-Mk3-6-0 
REMO2009 MPI-ESM-LR RCA4 MIROC5 
RCA4 EC-EARTH RCA4 NorESM1-M 
RCA4 IPSL-CM5A-MR RCA4 GFDL-ESM2M 
RCA4 HadGEM2-ES   
RCA4 MPI-ESM-LR    

RCP8.5 (21) CCLM4-8-17 EC-EARTH RegCM4-3 HadGEM2-ES 
CCLM4-8-17 HadGEM2-ES RACMO22E HadGEM2-ES 
CCLM4-8-17 MPI-ESM-LR RACMO22E EC-EARTH 
HIRHAM5 EC-EARTH RCA4 CanESM2 
REMO2009 MPI-ESM-LR RCA4 CSIRO-Mk3-6-0 
RCA4 EC-EARTH RCA4 MIROC5 
RCA4 IPSL-CM5A-MR RCA4 NorESM1-M 
RCA4 HadGEM2-ES RCA4 GFDL-ESM2M 
RCA4 MPI-ESM-LR CCLM5-0-6 EC-EARTH   

CCLM5-0-6 MIROC5   
CCLM5-0-6 MPI-ESM-LR   
CCLM5-0-6 HadGEM2-ES  
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Appendix A: Implementation details and optimal parameter 
determination 

In this section we present some details of the technical imple
mentation of some of the CCM approaches (cf. Table A1) and investigate 
the effect of the parameter choice on the CCM error statistics for the 
different approaches. Of the approaches presented in Table 1, M30. 
upd.10 and MA30 are WMO standards and have fixed parameters. The 
equally weighted moving average (MA), linear trend (LT), cubic spline 
(SP), Gaussian kernel smoother (KS) and local linear regression (1st 
order LOESS, LO) all have one free parameter that can be optimized in 
terms of CCM error behavior with respect to the centered 30-year mean 
benchmark (cf. section performance metrics in the main text). For MA, 
the parameter is the averaging window length wMA. For LT, it is the 
trend window length wLT. For KS, it is the smoothing bandwidth bwKS. 
For SP, it is the degree of freedom dfSP and for LO, it is the trend window 
length wLO. Three error metrics used here are the bias, the mean square 
error (MSE) and the mean absolute error (MAE). 

Fig. A1 shows the error metrics for the CCM of annual Swiss mean 
temperature. They are aggregated for all 64 end years of the future 
(2021–2084) and the same number of end years of the past looking 
backward from 2020 (1957–2020). In the scientific literature, the 
optimal parameter choice is often determined where the MSE reaches a 
minimum (cf. dots and printed MSE values in Fig. A1, center panels). For 
MA, KS and SP the minima are well confined and the optimal parameter 
of the observational period is mostly similar to the one of the future 
intermediate- (RCP4.5) or high-emission (RCP8.5) scenario. It is also 
reasonably close to the parameter chosen by other authors or institutions 
(wMA = 10 years, cf. IPCC, 2021; dfSP = 6, cf. Rigal et al., 2019). The 

CCM error characteristics for LT and LO look very similar. This is not 
astonishing since we use a first order (linear) LOESS and the only dif
ference between the two is the weighting scheme of the input data points 
(cf. de Valk, 2020). The MSE values of LT and LO are in general low. 
While for the observational period, the 20 (LT) and 30 (LO) year win
dows achieve the minimum MSE, the optimal windows are larger for the 
future scenarios (wLT: 36/38 (RCP2.6/RCP8.5) or even 58 years 
(RCP4.5) and wLO: 55 (RCP2.6/RCP8.5) or 80 years (RCP4.5)). The 
windows used operationally by the Copernicus Climate Service (wLT =

30 years) and KNMI (wLO = 42 years) show MSE values close to the 
optimized minima for the observational and the three future scenario 
periods. 

Note that for the past period 1957–2020, all CCM approaches with 
optimized parameters work similarly well (MSE = 0.039–0.049 ◦C2, cf. 
Table A2). For the scenario period 2021–2084, the performance be
tween the approaches differs considerably. For the low-emission sce
nario RCP2.6, MA (wMA = 16 years) and KS (bwKS = 24 years) work best 
(MSE = 0.022 ◦C2) while for intermediate-emission RCP4.5 and high- 
emission RCP8.5 LO (wLO = 55 / 80 years) performs best (MSE =
0.028 and 0.041 ◦C2) but LT and SP show only somewhat higher MSE 
values. Note that the MSE is much higher (MSE > 0.1 ◦C2) for MA and KS 
in the high-emission RCP8.5 scenario. 

Appendix B: EURO-CORDEX simulations 

See Table B1 

References 

Arguez, A., Vose, R.S., 2011. The Definition of the Standard WMO Climate Normal: The 
Key to Deriving Alternative Climate Normals. Bull. Am. Meteorol. Soc. 92, 699–704. 
https://doi.org/10.1175/2010BAMS2955.1. 

Arguez, A., Vose, R.S., Dissen, J., 2013. Alternative Climate Normals: Impacts to the 
Energy Industry. Bull. Am. Meteorol. Soc. 94, 915–917. https://doi.org/10.1175/ 
BAMS-D-12-00155.1. 

Beersma, J.J., Buishand, T.A., 2004. Joint probability of precipitation and discharge 
deficits in the Netherlands. Water Resour Res 40, W12508. https://doi.org/10.1029/ 
2004WR003265. 

Begert, M., Frei, C., 2018. Long-term area-mean temperature series for 
Switzerland—Combining homogenized station data and high resolution grid data. 
Int J Clim 38, 2792–2807. https://doi.org/10.1002/joc.5460. 
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