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A B S T R A C T   

Background: Dengue fever is a growing concern for public health under future climate variability. This study aims 
to investigate the dengue fever from 35 cities/counties linked with historical observation and anomaly of 
weather variables from 4 weather stations in Indonesia. 
Method: We collected monthly surveillance data of dengue fever in central java, temperature and precipitation 
from Tegal, Semarang, Tunggul wulung and Sleman weather stations, and flood event from 2009 to 2019. The 
distributed non-linear model was adopted to evaluate the effect of extremes weather variables and anomalies on 
the dengue risks. The extreme thresholds were defined at 5th and 99th percentile. Random-effects meta-analysis 
was applied to estimate weather station-specific pooled relative risk (RR) and 95% confidence intervals (CI) for 
the studied areas. 
Result: Dengue prevalence rates were higher in the rainy season (Nov–March) compared to dry season (Apr–Oct). 
Extreme high temperature was positively associated with dengue fever in Semarang with RR of 4.92 (95 % CI: 
1.01, 24.0). Extreme low precipitation was positively associated with dengue fever in Tegal with RR of 9.60 (95 
% CI: 2.65, 34.6). The risk of dengue fever in western part of Central Java, especially in the Tunggul wulung, was 
positively associated with extreme high anomaly of precipitation [RR = 4.05 (95 % CI: 1.86, 13.7). Meanwhile, 
extreme low anomaly of precipitation was positively associated with the risk of dengue fever with RR of 2.75 (95 
% CI: 1.75, 4.32) in Semarang. 
Conclusion: These findings highlight the importance of considering weather variability in addressing the risks 
associated with dengue fever in Central Java, Indonesia.   

Introduction 

Dengue fever is the most widespread and rapidly increasing vector- 
borne disease globally and has caused a serious public health problem 
(World Health Organization, 2020). The incidence of dengue fever has 
risen dramatically in recent decades. Over the last two decades, the 
number of dengue cases reported to WHO has increased by 8-fold, from 
505,430 cases in 2000 to over 2.4 million in 2010 and over 5.2 million in 
2019 (World Health Organization, 2021). The prior study estimated that 

70 % of the actual dengue fever global burden was found in Asia (Bhatt 
et al., 2013). The rapid spread of dengue fever has been attributed to 
climate change, globalization, and a lack of effective mosquito control 
(Gubler, 2011). There is also a possibility that ongoing climate change, 
frequent international travel, or unplanned urbanization may contribute 
to the changing geographical distribution and increasing burden of 
dengue epidemics in recent years (Ebi and Nealon, 2016; Messina et al., 
2014). 

Dengue viruses are transmitted by two species of Aedes female 
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mosquitoes, mainly Aedes aegypti and, to a lesser extent, Aedes albopictus 
(Kraemer et al., 2015). It has four distinct serotypes (DENV-1 to 4), and 
patients infected by the dengue virus have a wide range of non-specific 
clinical manifestations, including high fever, maculopapular rash, and 
pain in five distinct areas: severe frontal headache, retro-orbital pain, 
bone pain, myalgia, arthralgia (Chang et al., 2018; Guzmán and Kourí, 
2002). Another severe clinical dengue fever level can occur with 
bleeding tendency, thrombocytopenia, and plasma leakage, as seen in 
dengue hemorrhagic fever and dengue shock syndrome (Wang et al., 
2020). Some diseases, such as influenza, enteric fever, leptospirosis, 
typhus fever, and malaria, have similar manifestations; thus, dis-
tinguishing dengue fever from other dengue-like diseases is important 
for early diagnosis and treatment. 

With projected climate changes, there is a noticeable increase in 
global surface temperature, accompanied by a high risk of both floods 
and rising sea levels in Indonesia (IPCC, 2022). Climatic change and 
variability are known as the key driver of vector abundance and the 
dynamics of dengue fever transmission (Nosrat et al., 2021). Numerous 
studies conducted in tropical regions have revealed that dengue fever 
transmission takes place within an optimal temperature range of 25–30 
◦C (Monintja et al., 2021; Lahondère and Lazzari, 2012). Temperature 
can affect the mosquito biological process such as reproduction, biting 
rate, development rate, etc. Additionally, rainfall emerges as the fore-
most influencing factor in vector development and dynamics (Bai et al., 
2013; Naish et al., 2014). Abundant rainfall negatively correlated with 
dengue incidence because it flushed away the mosquito eggs; however, 
rainfall can provide suitable environment for mosquito to breeding 
(Méndez-Lázaro et al., 2014; de Melo et al., 2012). 

Furthermore, wind speed and sunshine duration might be weather 
factors that influence the risk of dengue fever (Masrani et al., 2021; 
Pham et al., 2011). Previous studies have shown that low wind speed 

increased dengue incidences compared to high wind speed (Masrani 
et al., 2021). A longer duration of sunlight will lead to higher temper-
ature, which increases the transmission rate of dengue fever in various 
ways (Lai, 2018). 

The latest IPCC (AR6) report estimated that vector-borne diseases is 
likely to have longer epidemics seasons and wider distribution in Asia in 
the future, which may jeopardizing the health and welfare of 2.25 billion 
people due to dengue fever (IPCC, 2022). Indonesia, a tropical island 
country, long-term experience epidemics and endemics of mosquito- 
borne disease transmission like malaria and dengue fever. It is neces-
sary to strengthen the community resilience against climate hazards. 
With regards to dengue fever, such adaptation measures require 
appropriate knowledge of the underlying association between the 
dengue fever and climate variability. Hence, this study aims to investi-
gate the effects of extremes and anomalies of weather variables, 
including temperature, precipitation, wind speed, sunshine hours, and 
flood event, on dengue fever risk using time-series population-based 11 
years (2009–2019) surveillance data of dengue fever in Central Java, 
Indonesia. 

Materials and methods 

Study area 

This study focused on monthly and four regions analysis for dengue 
fever in Central Java, Indonesia. Central Java is located at 7.1510◦ S, 
110.1403◦ E. It has an area of 32,800.69 km2, with 34,718,204 people in 
2019 making Central Java the third most populous province in 
Indonesia. This study first evaluated the city-specific dengue fever risk 
associated with extremes and anomalies of weather variables, and 
further the pooled relative risks were estimated by region of the weather 

Fig. 1. The area coverage by weather stations located in Central Java, Indonesia.  
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stations. The city/counties covered in each region of the weather sta-
tions (Tegal, Semarang, Tunggul wulung, and Sleman) is shown in Fig. 1 
and Supplementary Table 1. 

Data sources 

A laboratory-confirmed dengue fever cases admitted to the city/ 
county hospitals must be reported to the City Health Office within 24 h 
of diagnosis. The Provincial Health Office (PHO) summarizes all cases 
weekly and reports to the Indonesian Ministry of Health on a monthly 
basis. Dengue cases were regarded as positive based on the following 
criteria: (1) anti-dengue virus IgM in acute or convalescent serum 
samples; (2) a 4-fold increase in specific IgG antibody titers between the 
acute and the convalescent samples; (3) isolation of dengue virus; (4) 
detection of dengue antigen or RNA in serum (MoHRo, 2005). We suc-
cessfully retrieved monthly surveillance of laboratory-confirmed dengue 
fever cases (indigenous and imported cases) admitted to the hospitals 
from the Central Java PHO for 35 cities/counties in Central Java from 
January 2009 to December 2019. 

Meteorology, Climatology, and Geophysical Agency (Indonesian: 
Badan Meteorologi, Klimatologi, dan Geofisika, abbreviated: BMKG) 
provided daily weather data of average temperature (◦C), cumulative 
precipitation (mm), wind speed (m/s) and sunshine hours (hour) for the 
same period. We aggregated the daily weather data into monthly 
average weather data from 4 observatories, namely Tegal, Semarang, 
Tunggul wulung and Sleman weather stations. For Central Java, weather 
data were obtained from 3 stations in Semarang, Tegal, and Cilacap, and 
one station located in Sleman, Yogyakarta. The locations of four weather 
stations are illustrated in Fig. 1. Detailed station information and quality 
assurance criteria are available on the portal (https://dataonline.bmkg. 
go.id/). 

Further, to calculate the monthly anomalies of weather variables, 
this study used the 30-years records of monthly weather data from 1990 
to 2019 to calculate the baseline. In this case, because of the limitation of 
data availability, Sleman weather station used 16 years of recorded 
monthly weather data (2004 to 2019) to calculate the baseline. World 
Meteorological Organization (WMO) suggested that above ten years of 
data provided a predictive skill similar to that from a standard 30-year 
period (World Meteorological Organization, 2017) [125]. This study’s 
climate anomaly varied by city, month, and year. The formula used for 
climate anomalies calculation is mentioned below: 

Climate anomalies value for month ′m′ and year ′y′ = X − X̄ (1)  

where X is an actual observation of climate variables (average temper-
ature, cumulative precipitation, wind speed, and sunshine hours) for 
month ‘m’ and year ‘y’. X‾ is the mean of 30 year or 15 year meteoro-
logical variables for month ‘m’. 

Indonesian National Board for Disaster Management (Indonesia: 
Badan Nasional Penanggulangan Bencana abbreviated: BNPB) web page 
(https://dibi.bnpb.go.id/) provides monthly flood events in Central 
Java. Data were obtained at city level from 2009 to 2019. According to 
the Indonesian National Board for Disaster Management, a flood event is 
an event or condition where an area or land is submerged due to an 
increased volume of water (Law on Disaster Management, 24, 2007). 

Data analysis 

Prevalence rate analysis 
The prevalence rate is the number of people with a particular disease 

in a population at a certain time, expressed as a percentage per 100,000 
people (Health USDo, 2011): 

Prevalencerate =
number of all existing cases at the time (or period)
the average number of people in the same period
× 100, 000 (2) 

This study calculated the prevalence rates by month and region to 
observe the seasonal (rainy season: from November to March; dry sea-
son: from April to October) and spatial difference in prevalence rate 
from January 2009 to December 2019. 

Non-linear association between monthly climatic variability and dengue 
fever risks 

This study investigated the temporal association between dengue 
fever cases and meteorological factors using a two-stage analytical 
method. In the first stage, we adopted distributed lag non-linear model 
(DLNM) proposed by Gasparrini et al. (Gasparrini et al., 2010). Gener-
ally, DLNM is used to assess the relationship between meteorological 
factors and infectious disease in an epidemiological study (Xiang et al., 
2017; Limper et al., 2016). In this study, quasi-Poisson was developed, 
which was specified as: 

Log[E(Y) ] BS(T , lag)+BS(PP, lag)+ ns(ws, df = 3)+ ns(sh, df

= 3)+ ns(time, df )+Floodevent + log(population) (3)  

Where Y is the monthly city-specific number of laboratory-confirmed 
dengue fever cases, T is the monthly measurement or anomaly of 
average temperature, and PP is the monthly measurement and anomaly 
of cumulative precipitation in the specific city. This study evaluated the 
lag non-linear associations between weather variability and dengue 
fever risks using the basis spline (BS) function with 3 degrees of freedom 
(df) for monthly average temperature and cumulative precipitation, the 
effects were assessed for lag 0 to 2 months. Based on prior studies using a 
monthly time scale, lag in weather variables would not be set for more 
than two months (Xiang et al., 2017; Ramadona et al., 2016; Colón- 
González et al., 2013). In addition, the model controlled the monthly 
average wind speed (ws) and sunshine hour (sh) and both were set as the 
natural cubic spline with df equal to 3 (Xu et al., 2019). While there are 
other available options of spline, our study adopted natural cubic splines 
in our model setting. By using ns as a splines, model constructs a fixed 
locations for the knots throughout the data range and it has less number 
of degree of freedom (Yan et al., 2019; Yang et al., 2012). Additionally, 
we included flood event variable in our model. We computed binary 
variables to indicate a city is experiencing flood during the specific 
month. This model also considered time as a natural cubic spline to 
control the seasonal and long-time trend components by changing the 
degree of freedom from 4 and 7 df/year for temporal adjustment 
(Cheong et al., 2013). A variable or a set of variable representing time (t) 
had been widely used in statistical regression models in environmental 
health or epidemiology field to control for seasonality and long-term 
trend (Kim et al., 2021; Andhikaputra et al., 2023). In addition, natu-
ral cubic spline (ns) with degrees of freedom (df) per year are commonly 
used and its performance has been tested by simulation studies (Kim 
et al., 2021; Peng et al., 2006; Perrakis et al., 2014). The model selection 
is based on the lowest Akaike’s information criterion generated by the 
model (Supplementary Table 2) (Ramadona et al., 2016). 

In the second stage, meta-analysis was fitted with a random-effects 
model to pool the relative risk of city-specific exposure–response asso-
ciations and 95 % confidence interval for dengue fever in each region of 
the weather station from the results of the first stage analysis. The risk 
estimates for extremes of monthly average temperature and cumulative 
precipitation and their anomalies were reported at both 5th and 99th. 
The risk of extreme low and high is reported at 5th and 99th percentile 
of the monthly average temperature/cumulative precipitation and their 
anomalies, respectively. Instead of defining symmetrical percentile for 
the extremes cut, this study used 5th percentile to assess the risk of 
extreme low temperature and 99th for extreme high temperature. Those 
numbers were chosen because Indonesia has tropical climate condition, 
the 1st percentile is considered too low in Indonesia and the frequency of 
it will be decreasing in the future due to the climate change. Moreover, 
we believe that global temperatures are likely to continue rising in the 
future, so we preferred to report the risks at 99th instead of 95th 
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Table 1 
Total cases and prevalence rate of dengue fever (per 100,000 people) by month in Central Java, 2009 to 2019.  

Region Sum of cases Prevalence rate (per 100,000 people) 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Tegal 15,907 17.5 18.1 16.1 18.6 14.7 12.3 9.93  7.68  6.11  8.31  7.41 9.14 
Semarang 64,464 163 139 116 102 74.7 53.1 56.1  43.3  41.6  52.4  58.8 72.1 
Tunggul wulung 14,476 32.2 37.9 34.1 39.1 32.5 24.7 23.5  16.1  11.4  9.84  8.51 14.9 
Sleman 32,778 35.3 32.4 33.4 38.3 31.6 28.1 26.7  18.5  14.1  13.4  11.8 16.8 
Total 127,625 248 227 200 198 153 118 116  85.5  73.3  83.9  86.5 113  

Fig. 2. Monthly dengue fever cases in Central Java by regions from 2009 to 2019.  

Fig. 3. The monthly average temperature (◦C), cumulative precipitation (mm), wind speed (m/s) and sunshine hours (hour) in the Tegal weather station (a), 
Semarang weather station (b), Tunggul wulung weather station (c) from 1990 to 2019 and the Sleman weather station (d) from 2004 to 2019. 
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percentile. 
All analyses were conducted using the mgcv, dlnm, and mvmeta 

packages in R (version 3.3.3). 

Results 

Characteristics of dengue fever and climatic factors 

The descriptive statistics of the number of dengue fever cases from 
2009 to 2019 is presented in Table 1. The total number of dengue fever 
cases was 127,625 cases in Central Java, with the highest case number in 
the Semarang region (n = 64,464 cases). The trends of monthly dengue 
fever cases are shown in Fig. 2. Transmission of dengue fever usually 
starts in December and reaches its peak in January and February. Sup-
plementary Fig. 1 A illustrates the prevalence rates of dengue fever per 
100,000 populations during 2009–2019 by city. We found that Semar-
ang City, Magelang City, and Jepara County were the top three areas 
with the highest prevalence rates during the study period. The study also 
observed a strong seasonal pattern with a high monthly average prev-
alence rate occurring from November to March (Supplementary Fig. 1 
B). 

Fig. 3 shows the trends for monthly climate parameters and anom-
alies in each weather station of Central Java. The average temperature 

rose gradually during the study period, and the cumulative precipitation 
decreased at the end of the study period. On the other hand, the wind 
speed trend fluctuated, especially in the Tunggul wulung and Sleman 
weather stations. In line with temperature, sunshine hours were also 
found elevated each year. 

Supplementary Table 3 lists statistics for monthly observed and 
anomaly of weather variables from 2009 to 2019 in each weather station 
of Central Java. The observed monthly average temperature varied from 
26.2 ◦C (Sleman weather station) to 28.2 ◦C (Semarang weather station) 
while the warmest anomaly of monthly average temperature was 
observed in Tegal station with 0.43 ◦C and the lowest was shown in 
Sleman station with 0.11 ◦C during 2009–2019. The observed monthly 
cumulative precipitation ranged from 139 to 254 mm and the monthly 
anomaly of cumulative precipitation ranged from − 5.77 to 6.75 mm. In 
terms of wind speed, the observed monthly average wind speed ranged 
from 2.49 to 6.03 m/s and its anomaly ranged from 0.07 to 0.55 m/s. In 
terms of sunshine hours, the observed monthly average sunshine hours 
ranged from 5.59 to 6.19 h and the anomaly ranged from − 1.62 to 0.41 
h in the study period. 

The descriptive statistics of the number of flood events from 2009 to 
2019 is presented in Supplementary Table 4 and the trend can be seen in 
Supplementary Figure 2. The total number of flood events was 1,175 in 
Central Java, with the highest number in the Semarang region (n = 438). 

Fig. 4. Relative risk (95% confidence interval) of region-specific dengue fever associated with monthly (a) average temperature and (b) cumulative precipitation in 
Central Java from 2009 to 2019. 
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It was found that Tegal City, Batang County, and Wonosobo County are 
the top three areas with the highest beta estimates of flood events 
(Supplementary Table 5). 

The association between dengue fever cases and observation and weather 
anomalies 

Fig. 4 demonstrates the pooled relative risk of dengue fever associ-
ated with monthly average temperature and cumulative precipitation by 
region of weather station. We observed the temperature with the lowest 
risk of dengue fever was around 27 ◦C in study regions. A significant risk 
of dengue fever was observed as the average temperature was above 
28.3 ◦C in the region of Tunggul wulung weather station. Nevertheless, 
the risk declined as the temperature increased. The risk of dengue fever 
was significantly associated with extreme high average temperature in 
the region of Semarang weather station with RR of 4.92 (95 % CI: 1.01, 
24.01) (Table 2). 

The results of observed extreme temperatures for the pooled analyses 
were similar with the city-specific analyses. Supplementary Figs. 3-4 
show that the cities in the Semarang and Tunggul wulung weather sta-
tion region were more vulnerable to dengue fever infection at higher 
temperature. 

On the other hand, for associations between monthly cumulative 

Table 2 
Region-specific relative risk (95% confidence interval) of dengue fever cases 
associated with the observed weather and anomalies at 5th and 99th percentiles 
relative to the reference value from 2009 to 2019.  

Variables 
\Region 

Tegal Semarang Tunggul 
wulung 

Sleman 

Observed 
Extreme low 

temperature 
1.46 (0.84, 
2.56) 

1.56 (0.91, 
2.67) 

0.62 (0.05, 
6.99) 

0.17 (0.04, 
0.59) 

Extreme high 
temperature 

0.02 (0.01, 
0.24) 

4.92 (1.01, 
24.0) 

1.71 (0.41, 
7.18) 

0.74 (0.29, 
1.90) 

Extreme low 
precipitation 

9.60 (2.65, 
34.6) 

0.70 (0.21, 
2.25) 

0.70 (0.06, 
7.23) 

0.90 (0.36, 
2.25) 

Extreme high 
precipitation 

1.01 (0.11, 
8.70) 

0.22 (0.06, 
0.76) 

0.78 (0.09, 
6.40) 

0.81 (0.16, 
4.26) 

Anomaly 
Extreme low 

temperature 
0.84 (0.41, 
1.72) 

1.07 (0.37, 
3.06) 

0.60 (0.19, 
3.33) 

0.40 (0.14, 
1.10) 

Extreme high 
temperature 

3.77 (0.18, 
76.2) 

2.26 (0.27, 
18.9) 

0.28 (0.01, 
7.03) 

0.81 (0.29, 
2.23) 

Extreme low 
precipitation 

0.72 (0.37, 
1.40) 

2.75 (1.75, 
4.32) 

1.33 (0.42, 
4.20) 

2.23 (1.51, 
3.28) 

Extreme high 
precipitation 

3.84 (0.37, 
39.1) 

1.06 (0.74, 
1.51) 

4.05 (1.86, 
13.7) 

1.06 (0.47, 
2.39)  

Fig. 5. Relative risk (95% confidence interval) of region-specific dengue fever associated with anomalies of monthly (a) average temperature and (b) cumulative 
precipitation in Central Java from 2009 to 2019. 
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precipitation and dengue fever risk, the reference value for all studied 
regions was set at 100 mm. Fig. 4b displays a significant risk association 
of dengue fever with monthly cumulative precipitation above 130 mm in 
the region of Semarang weather station, and above 100 mm in the region 
of Sleman weather station. However, the risk was decreased as the 
precipitation reached the 99th percentile. The effect of extreme low 
cumulative precipitation was only found in the Tegal weather station 
region with RR of 9.60 (95 % CI: 2.65, 34.6) (Table 2). The relative risk 
of city-specific dengue fever associated with the observed cumulative 
precipitation in 35 cities of Central Java can be seen in Supplementary 
Fig. 5-6. 

Fig. 5 displays the pooled relative risk of dengue fever associated 
with anomalies of monthly average temperature and cumulative pre-
cipitation by region of the weather station. The reference values were set 
at 0 ◦C for anomaly of average temperature and 0 mm for anomaly of 
cumulative precipitation to represent the present condition. We found a 
significant association with an anomaly of average temperature at 0.74 
◦C in the region of Tegal weather station and at 0.65 ◦C in the region of 
Sleman weather station. However, we did not observe a significant risks 
at both extreme low and high anomaly of average temperature in four 
regions. In terms of anomaly of monthly cumulative precipitation, sig-
nificant associations between extreme high anomaly of cumulative 
precipitation and the risk of dengue fever was identified in regions of 
Tunggul wulung weather station, with RR of 4.05 (95 % CI: 1.86, 13.7) 
(Table 2). In addition, the positive associations between extreme low 
anomaly of cumulative precipitation and increase risk of dengue fever 
were captured in Semarang and Sleman weather station regions, with 
RR of 2.75 (95 % CI: 1.75, 4.32) and 2.23 (95 % CI: 1.51, 3.28), 
respectively (Table 2). The results capture the relative risk of city- 
specific dengue fever and anomalies of temperature (Supplementary 
Figs. 7–8) and cumulative precipitation (Supplementary Figs. 9–10) 
were similar with the pooled analyses. 

Discussion 

This study is the first population-based study intended to identify the 
temporal association between the risk of dengue fever and extremes and 
anomaly for weather variability in Central Java, Indonesia. We evalu-
ated the effect of climate change on vector-borne disease (dengue fever) 
by adopting both anomalies and direct measurements of weather vari-
ables as the exposure metric in our study. Previous study indicates that 
anomalies on weather variables can reflect changes in the historical 
context of climate and fill-out the scientific gap in how long-term 
changes climate impact the disease burden (Andhikaputra et al., 2023). 

Our study found that exposure to extreme high temperature and 
extreme low precipitation of direct measurement would increase the risk 
of dengue fever in Semarang and Tegal station regions, respectively. 
Furthermore, anomaly of extreme precipitation was elevated the risk of 
dengue in almost all study area, except for Tegal station region. On the 
other hand, our study did not capture a significant effect of anomaly of 
extreme temperature on the risk of dengue fever in Central Java, 
Indonesia. A previous study mentioned that anomaly metrics cannot be 
compared directly with the direct measurements variables because 
anomaly is a generalized variable that considers the human adaptation 
over that particular historical period (Liu et al., 2022). 

The observed extreme high average temperature may elevate the risk 
of dengue fever in the Semarang weather station region. The average 
temperature in Semarang weather station region was relatively higher 
than in other regions. Semarang weather station covers an area on the 
northeast coast of Central Java with ports and industrial areas. The 
average temperature near ports and industrial areas was higher than in 
other areas (Asariotis et al., 2018). Previous studies observed that 
extreme temperature positively affects dengue fever risk (Cheng et al., 
2020; Ferreira, 2014). Extreme temperature in the summer months 
drives people to store the water in open containers in their homes, 
providing ideal breeding sites for Aedes mosquitoes (Beebe et al., 2009). 

A study in Thailand found that larva development was negatively 
affected by extreme high or low temperature (Campbell et al., 2013). 
The physiological process of mosquitoes would be slower at temperature 
higher than 35 ◦C, the optimum average temperature for mosquito 
growth is 25–30 ◦C (Monintja et al., 2021; Lahondère and Lazzari, 
2012). However, this study defined the extreme temperature as 
27.8–29.7 ◦C (99th percentile) on a monthly scale that is in line with the 
optimal temperature threshold for Aedes mosquitoes (Mordecai et al., 
2017). 

There was no effect at extreme low and high anomaly of average 
temperature on the dengue fever risk in the overall study area. Never-
theless, the risk of dengue fever has been associated with warmer cli-
mates. In warmer conditions, the mosquitoes’ gonotrophic cycle can be 
accelerated and make female Ae. aegypti are more aggressive by 
increasing the biting rate and potentially transmitting viral practices to 
susceptible hosts (Teurlai et al., 2015; Focks et al., 2000; Scott et al., 
2000). On the contrary, the low temperature might accelerate the 
dengue virus transmission by Aedes aegypti (Carrington et al., 2013). The 
mosquitoes with longer life-span in lower temperature would be ex-
pected to increase vector capacity and thus enhance virus transmission 
potential (Chang et al., 2007). 

This study found extreme low monthly cumulative precipitation 
from the direct measurement variable increased the dengue fever risk in 
the region of Tegal weather station. The region of Tegal weather station 
is located in the northwest parts of Central Java which is a lowland and 
coastal area. A prior study in Brazil indicated that coastal areas are likely 
to face more drought and heatwaves (Rodrigues, 2020). Previous study 
also found that extreme drought increased the risk of dengue with 
different delays (Lowe et al., 2021). Extremely low precipitation can 
increase ambient temperature, water usage, air-coolers, and water 
storage that may serve as a breeding site (Hii et al., 2009). 

Extreme low and high anomalies of cumulative precipitation were 
associated with dengue fever risk. According to a study in Hong Kong, 
the relative risk of dengue fever was higher when rainfall intensity 
before summer was lower than before (Yuan et al., 2020). A prior study 
also found that anomalously hot and dry conditions can lead to 
increased water storage around households and subsequent increases in 
populations of container-breeding mosquitoes like Ae. aegypti may 
transmit dengue virus (Anyamba et al., 2014). On the other hand, 
anomalously wet conditions could trigger the large-scale emergence of 
mosquito-borne disease and enhance the production and sustainment of 
vegetation that is the habitat of mosquitoes (Anyamba et al., 2012). This 
study also found that the higher prevalence rate occurs in rainy seasons. 
Several epidemiological studies have perceived a strong association 
between high precipitation and dengue fever risk (Xu et al., 2019; 
Kakarla et al., 2019). Another study in Indonesia found that dengue 
fever was a seasonal disease that mostly occurred in the rainy season 
when the precipitation is higher (Nuraini et al., 2021). During periods of 
high precipitation, rural areas inclined to be better able to absorb excess 
rainwater than urban areas and their artificial water catchments (Nosrat 
et al., 2021; Wasko and Sharma, 2017), potentially preventing a flood 
and instead of providing more stable water pools for mosquito breeding. 
Heavy rainfall observed with a higher transmission risk of dengue fever 
for up to 2 months (Kakarla et al., 2019; Fuller et al., 2017). 

This study observed dengue fever risk would be elevated with 
extreme high anomaly of cumulative precipitation in the western parts 
of Central Java (regions of Tunggul wulung stations), meanwhile, the 
extreme low anomaly of cumulative precipitation increased the dengue 
fever risk in the eastern parts of Central Java (Fig. 5). The cumulative 
precipitation in the Sleman weather station region was relatively lower 
than the Tunggul wulung weather station region. Likewise, despite as a 
province with the highest rainfall in the Java Island (Avia, 2019), prior 
study proved that the eastern part of Central Java tends to have lower 
rainfall compare to the western part (Avia, 2019). In addition, the near 
future prediction from 2009 to 2028 of rainfall distribution pattern in 
Central Java was reported that almost half of Central Java Province will 
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experience a decrease in high rainfall, and can cause drought (Nurroh-
man et al., 2021). Thus, based on climate projections and the present 
epidemiological findings, we would expect the greater challenge of 
control for dengue fever risk in Central Java in near future. 

In addition, this study found that several city/county has positive 
beta estimates of flood event, top three areas with the highest beta es-
timates are Tegal City, Batang County, and Wonosobo County (Supple-
mentary Table 5). Likewise, a review study reported that flooding has 
strong association with increased incidence of vector-borne diseases, 
including malaria, dengue, and other diseases (Coalson et al., 2021). On 
the contrary, study from island-wide country of Singapore indicated that 
rainfall-induced flushing event is statistically associated with the 
decreased risk of dengue outbreak (Benedum et al., 2018). Therefore, 
further study should be initiated in the future to untangle the nebulous 
association between flood event and dengue fever risk. 

The various climate variables analyzed in this study reveal distinct 
patterns in the association between climate and dengue fever. For 
instance, utilizing observed precipitation data is likely to capture sea-
sonal trends in dengue fever transmission. Conversely, anomalies in data 
highlight variations in the intensity of extreme precipitation events 
(Dimitrova et al., 2022). Given the ongoing climate change, it is antic-
ipated that the frequency and intensity of such extremes will rise, 
leading to disruptions in both human and ecological systems. These 
disruptions can impact vector survival, transmission routes, human 
behavior, and immune responses. The findings indicate a heightened 
risk during the dry season in the western regions of Central Java and 
increased risks during rainy seasons in the eastern regions. 

There are a lot of studies in Indonesia that have reported the risk of 
dengue fever. Yet, limited studies are available to study the anomaly of 
weather variability on dengue fever risk (Nosrat et al., 2021). Under-
standing how extreme climate events impact infectious disease trans-
mission is essential as climate change accelerates and intensifies (Nosrat 
et al., 2021). A strength of the study is the estimation of monthly 
observation and weather anomalies to explain dengue fever risk. There 
is a possibility that the study’s findings can be applied to other dengue- 
endemic areas similar to Central Java, Indonesia, and its findings 
regarding temperature- and precipitation-related risks can be applied to 
other regions with similar climates, demographics and socio-economics 
conditions. Future studies comparing the available weather data with 
the gridded weather data will strengthen give novel and robust epide-
miological evidence linking dengue fever and these novel climate 
exposure metrics. Moreover, a study focus on the effects of flood on the 
dengue fever risks would be very helpful in the future for the govern-
ment or policy makers in building the community’s resilience in the 
future. 

However, this study had few limitations. First, there is paucity in the 

meteorological data, since there are only four nearby stations located 
around the study area, thus we decided to divide the province in to four 
regions to match the spatial resolutions of the weather stations. Second, 
we did not incorporate socio-demographics details as confounding, as 
this individual-level information was not available. Additionally, the 
study only considered hospitalization at the public hospital, so the 
actual amount of dengue fever incidence is likely underestimated. 

This study gives evidence that may have an important role in 
improving regional public policies to control dengue fever risk. The 
temporal association between the risk of dengue fever and extremes and 
anomaly for weather variability can be used as a reference for the 
regional health sector to develop an early warning based on the weather 
variation. Community-based adaptation can be designed and imple-
mented, and the information and knowledge should be educated on the 
general public to enhance the community capacity and reduce the im-
pacts of dengue fever in extreme weather events. 

Conclusions 

Dengue fever in Central Java was influenced by extremes and 
anomalies of weather variables. The extreme high average temperature 
was associated with the risk of dengue fever in the Semarang weather 
station region. Dengue fever risk was also associated with extreme low 
cumulative precipitation in the Tegal weather station region. Moreover, 
dengue fever risk was also associated with extreme low and high 
anomalies of precipitation. Dengue fever risks in regions of Tunggul 
wulung weather stations were increased with the extreme high anomaly 
of cumulative precipitation. Meanwhile, the extreme low anomaly of 
cumulative precipitation elevated the risk of dengue fever in Semarang 
and Sleman weather station regions. Compiling with future climate 
forecasts, this study suggests local authorities should design and 
implement preventive strategies and actions to control the increasing 
dengue fever risk in Central Java. 
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Practical implications 

Climate change has been projected to increase the frequency and intensify the extreme weather events in the foreseeable future (IPCC, 2022), 
which may exacerbate the risk of infectious diseases in the Asia. While studies have proven climate variables (temperature and precipitation) 
with the increment burden of dengue fever, there is a scarce information available regarding how long term changes in climate situation affect 
disease burden. Thus, this study tried to include weather anomaly as exposure metrics in the analysis to quantify the effect of long term 
anomalies in temperatures and precipitation on dengue fever, which are more relevant in terms of climate change. To the best of our knowledge, 
this is the first study to untangle the temporal association between extremes and weather anomalies on vector-borne disease in Central Java, 
Indonesia using 11 years (2009–2019) of surveillance data. 

Our analysis reveals that dengue fever has seasonal pattern in Indonesia with highly monthly prevalence rate starts from November to March. 
We captured there was steady increment of monthly average temperature over the years, while, precipitation had decline trend in the past few 
years. The non-linear lagged regression model showed there was significant association between both extreme low and high of observation and 
anomaly climate factors and dengue fever, the risks varied between regions in Central Java, Indonesia. The distinction in specific climate- 
hazards on dengue fever highlight the urgency of integrating differences in public health preparedness measures to enhance community 
resilience toward the effect of climate change. The policymakers are suggested to take this knowledge for strengthening the preventive strategies 
to curb the dengue fever burden, which may include developing climate-based dengue fever early warning systems and community-based 
adaptation, may be worth considering for the future actions.  
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