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Abstract
Food insecurity is a major issue in many parts of the world, driven by conflict, economic instability, environmental chal-
lenges, and poor governance processes. Understanding the impact of future rainfall extremes on areas already experiencing 
food insecurity is crucial. This study investigates how food insecurity hotspots (FIH), food crisis frequency, and duration 
will change in the near future (2021–2050) and far future (2071–2100) under Shared Socioeconomic Pathways scenarios 
(SSP1-2.6, SSP2-4.5, and SSP5-8.5). The study utilizes precipitation data from the Coupled Model Intercomparison Pro-
ject Phase 6 (CMIP6) and FIH data from the NASA Socioeconomic Data and Applications Center (SEDAC). To calculate 
future exposure and vulnerability to FIH, as well as food crisis frequency and duration, weighted sum models were used. 
The results indicate that arid and semi-arid areas in northeastern Kenya, most of Somalia, zones in southeastern Ethiopia, 
most of Djibouti, and central and northern Sudan are highly vulnerable to future extreme rainfall events, an increase in FIH 
cases, and longer food crisis frequency and duration in the near future (2021–2050) and far future (2071–2100) under all 
scenarios. On the other hand, most districts in Uganda, southern and southwestern South Sudan, counties in western Kenya, 
and the majority of zones in western Ethiopia are projected to have very few FIH cases, low food crisis frequency, and dura-
tion in both the near and far future under all scenarios. These findings are crucial for early warning systems, humanitarian 
responses, and food security interventions. We recommend harnessing projected increases in rainfall for water harvesting in 
Kenya, as well as promoting cash and food crop production in central and western Ethiopia, central and northern Uganda, 
and most of South Sudan.
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Introduction

The vulnerability to food insecurity varies globally and is 
influenced by climate change (Krishnamurthy et al. 2014; 
Ibok et al. 2019). African countries, in particular, have lim-
ited capacity to adapt to climate change and are at risk of 
acute food insecurity (Betts et al. 2018; Ibok et al. 2019). 

Food insecurity hotspots are regions where large populations 
face severe and persistent challenges in accessing sufficient, 
safe, and nutritious food (Walls et al. 2019). A food crisis 
normally occurs when a significant portion of a population 
faces acute food insecurity, leading to widespread hunger 
and malnutrition (Das 2021). These crises can have devastat-
ing effects on public health, economic stability, social struc-
tures, which results in recurrent food crisis frequency (Hardy 
et al. 2019). These food insecurity hotspots, frequency and 
duration are often characterized by a combination of factors 
including conflict, climate shocks, economic instability, and 
weak governance (Bedasa and Deksisa 2024).

Extreme rainfall events, such as droughts and floods, 
have become more frequent due to human activities and 
global warming (IPCC 2022). Understanding the factors 
that determine food security and assessing its impacts are 
crucial for informing mitigation and adaptation strategies, 
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as well as policy development (Nef et al. 2022; Reynolds 
2019; FAO 2016). The Intergovernmental Authority on 
Development (IGAD) region is particularly susceptible to 
changes in rainfall patterns due to both local and large-
scale drivers (Omay et al. 2022; Nicholson 2017; Palmer 
et al. 2023). Evaluating past, present, and projected hot-
spots of food insecurity can help identify areas of high 
vulnerability and comprehend how communities cope with 
these challenges (Palmer et al. 2023). Changes in rainfall 
and temperature have significant implications for food pro-
duction systems (Vervoort et al. 2014). Climate models 
are essential tools for studying climate-related hazards in 
sectors such as agriculture and food security (Betts et al. 
2018), changes in ground water (Abdelkarim et al. 2024). 
Assessing the frequency and duration of future hotspots of 
food insecurity is essential for developing effective poli-
cies and initiatives to improve food security (Mathenge 
et al. 2023; Gebre and Rahut 2021; Sileshi et al. 2019).

Climate models are essential tools for understanding 
the climate system and informing actions to address cli-
mate change (Edwards 2011). The Climate Model Inter-
comparison Project Phase 6 (CMIP6) offers opportunities 
to enhance our understanding of climate change (Eyring 
et al. 2016). CMIP6 simulations and projections indicate 
an improvement in precipitation accuracy over East Africa 
compared to CMIP5 (Ayugi et  al. 2021a; Ayugi et  al. 
2021b), instilling confidence in early warning information 
and projected hotspots based on climate change. Research-
ers in East Africa have utilized CMIP6 products to exam-
ine past and future changes in precipitation extremes 
(Ayugi et al. 2021b; Dike et al. 2022; Mbigi et al. 2022), 
wet days and dry spells (Omay et al. 2023b), drought pat-
terns (Ayugi et al. 2022a), and population exposure (Ayugi 
et al. 2022b; Jiang et al. 2020).

Hunger and food insecurity are major challenges faced 
by East African countries (Omay et al. 2024). Both cli-
matic and non-climatic factors contribute to food inse-
curity, affecting approximately 1 billion people world-
wide (FAO 2018). Understanding the potential impact of 
extreme rainfall events on food security requires consider-
ation of factors that influence food availability, access, and 
utilization, as well as how future climate changes could 
affect these aspects (Burke and Lobell 2010). Climatic 
determinants of food insecurity include changes in rainfall 
dates, length of rainy season (Omay et al. 2022), wet/dry 
days, wet/dry spells (Thoithi et al. 2021), total rainfall, 
rainfall intensity, frequency, and intensity of floods (Dike 
et al. 2022). These factors play a significant role in food 
and cash crop production (Stocks 2016), as well as food 
availability and accessibility through markets (John 2024). 
Studies conducted in Ethiopia, Kenya, and Tanzania show 
varying levels of food security due to climatic and non-
climatic factors (Radeny et al. 2022).

Most of the published materials on food security in East 
Africa consist of review articles that focus on the current 
status of household food security. Research articles, on the 
other hand, delve into the different aspects of food security 
such as availability, accessibility, and utilization. However, 
these articles often fail to address how the situation will 
evolve in the near and distant future. Considering the nature 
of the issues and determinants of food security, hunger, and 
food insecurity in the IGAD region of eastern Africa (Omay 
et al. 2024), it is likely that the factors and circumstances 
contributing to current food insecurity will persist in the 
future, regardless of changes in climate. Surprisingly, there 
is a lack of evidence regarding the estimates of exposure 
under CMIP6 experiments and their potential impact on 
food security under common socioeconomic pathways like 
low (SSP1-2.6), medium (SSP2-4.5), and high emission 
(SSP5-8.5).

To the best of our knowledge, this study is the first to 
utilize CMIP6 models in order to assess the spatial patterns 
of future food insecurity hotspot frequencies and durations. 
By doing so, we aim to fill the existing gap in the literature. 
Therefore, this paper aims to address the following ques-
tions: (a) What might the spatial patterns of exposure look 
like in the future? How will past and present food insecurity 
hotspots be affected by projected exposure? How might the 
frequency and duration of food insecurity hotspots change 
in response to changes in total rainfall, rainfall intensity, wet 
days, wet spells, dry days, dry spells, RODs, RCDs, LRS, 
and the Standardized Precipitation Index (SPI) during the 
near future (2021–2050) and far future (2071–2100) under 
the shared socioeconomic pathways (SSP) scenarios? The 
rest of this paper is structured as follows: “Data sources and 
methodology” section provides an overview of the data and 
methods used. “Results and discussions” section presents 
the results and discusses the findings, and the last section, 
concludes the study.

Data sources and methodology

Data

Climate models simulations and projections

Climate model simulations and projection datasets from the 
Coupled Model Intercomparison Project phase 6 (CMIP6) 
were analyzed. These models were chosen based on their 
performance in the Intergovernmental Authority on Devel-
opment (IGAD) region (Fig. 1), as validated by Omay et al. 
(2023a). Table 1 presents the list of climate model simula-
tions and projections used. For more detailed information, 
including the area of study, list of 23 models, 10 best per-
formers, institutions, model names, resolutions, and first 
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member realization outputs, as well as the mathematical 
formulas used in the validation, refer to the studies by Omay 
et al. (2023a) and Omay et al. (2023a), Omay et al. (2023b).

Food insecurity hotspots

To anticipate future changes in patterns of vulnerability to 
food insecurity, we utilized the Food Insecurity Hotspots 
(FIH) data from the NASA Socioeconomic Data and 
Applications Center (SEDAC). These datasets are based 
on food insecurity indicators from the Famine Early 
Warning Systems Network (FEWS NET), which have been 
re-processed by the Center for International Earth Science 
Information Network—CIESIN—Columbia University. 
The FIH datasets provide information on the intensity 

and frequency of food insecurity between 2009 and 
2019(Center for International Earth Science Information 
Network—CIESIN—Columbia University 2020), as well 
as identify hotspot regions that have experienced recurrent 
food insecurity events. These FIH gridded datasets are 
derived from subnational food security analyses conducted 
by FEWS NET. In this study, we have adopted the five 
categories of food insecurity, as defined by the Famine 
Early Warning Systems Network (FNFIS) and integrated 
phase classifications (IPC): Minimal, Stressed, Crisis, 
Emergency, and Famine. However, for the purpose of 
this study, we have focused specifically on the food crisis 
category in order to examine how the FIH, food crisis 
frequency, and duration are projected to change in the near 
future (2021–2050) and the distant future (2071–2100) 

Fig. 1   The map of topography of the Intergovernmental Authority on Development (IGAD) region. The digital elevation model (DEM) datasets 
were retrieved from shuttle radar topography Mission (SRTM) 90 m spatial resolution http://​dds.​cr.​usgs.​gov/​srtm/. Accessed on 11 January 2024

Table 1   List of the top ten 
CMIP6 performances over the 
IGAD region that were used 
to calculate the Multi-Model 
Ensemble (EnsMean), together 
with the names, institutions, and 
spatial resolutions of the models

CMIP6 Model Name Institution Country Coarse resolution

1 BCC-CSM2-MR BBC China 1.1° × 1.1°
2 CMCC-CM2-HR4 CMCC Italy 0.942° × 1.25°
3 EC-Earth3 EC-Earth Consortium Europe 0.7° × 0.7°
4 GFDL-ESM4 NOAA-GFDL USA 1.3° × 1°
5 HadGEM3-GC31-MM MOHC UK 0.942° × 1.25°
6 INM-CM5-0 INM Russia 2° × 1.5°
7 IPSL-CM6A-LR IPSL France 2.5° × 1.3°
8 MIROC6 JAMSTEC Japan 1.4° × 1.4°
9 NorESM2-MM NCC Norway 0.94° × 1.25°
10 TaiESM1 CcliCS Taiwan 1.25◦ × 0.94◦

http://dds.cr.usgs.gov/srtm/
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under different Shared Socioeconomic Pathways (SSP1-
2.6, SSP2-4.5, and SSP5-8.5).

Methods

Projected extreme rainfall events

The study examines changes in patterns of ten extreme 
rainfall events that impact food security, such as total 
rainfall, rainfall intensity, wet days, dry days, wet spells, 
dry spells, Standardized Precipitation Index (SPI), rain-
fall onset and cessation dates, and rainy season length. 
These changes are calculated for each of the ten selected 
models. Additionally, a Mult-Models Ensemble (MME) 
is computed for each extreme rainfall event during three 
time periods: the baseline period (1985–2014), near future 

(2021–2050), and far future (2071–2100) under three dif-
ferent scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5). The 
study calculates the average or mean state, change, and 
rate of changes for each of the ten extreme rainfall events 
on annual and seasonal (DJF, MAM, JJAS, and OND) 
timescales. Wet/dry days and spells, as well as rainfall 
intensity, are defined based on specific criteria and a 
threshold of at least 1 mm for a rainy day. The threshold 
for onset is a total rainfall of 20 mm over 5 days, with at 
least 3 rainy days and a dry spell not exceeding 7 days 
in the next 21 days. The threshold for cessation is accu-
mulated rainfall of less than 0.5 of the evapotranspira-
tion over 10 days. The length of the season is determined 
by the number of days between the onset and cessation 
dates. To address resolution discrepancies among the ten 
CMIP6 models, all datasets were adjusted by scaling down 
their resolutions to a uniform scale of ten kilometers (0.1 
degrees). This rescaling process utilized the bilinear inter-
polation technique as described by Song and Yan (2022). 
For more detailed mathematical information, formulas, 
expressions, and spatial patterns related to onset, cessa-
tion, and season length, refer to the study by Omay et al. 
(2023a), The evaluation of models, best performance 

Fig. 2   Flipchart illustrating 
how projected food insecurity 
hotspots, food crisis frequency 
and duration computed

Table 2   Criteria for exposure to future extreme rainfall events

Exposure index  < 0.2 0.2–0.4 0.4–0.6 0.6–0.8  > 0.8

Severity of expo-
sure

Very low Low Medium High Very high

Table 3   Criteria for vulnerability to food insecurity

Vulnerability index  < 0.2 0.2–0.4 0.4–0.6 0.6–0.8  > 0.8

Severity of vulnerability Very low vulnerability Low vulnerability Medium vulnerability High vulnerability Very high vulnerability
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selection, and formulas, expressions, and spatial patterns 
related to wet/dry days, wet/dry spells, and SPI can be 
found in the study by Omay et al. (2023b).

Baseline food insecurity hotspot, frequency and duration

The dataset described in “Food insecurity hotspots” sec-
tion was used to plot the regional characteristics of Food 

Insecurity Hotspots (FIH) for each year from 2009 to 
2019. These patterns show the prevalence and severity of 
food insecurity, as well as the locations of hotspots that 
experience multiple food insecurity incidents due to cli-
matic and non-climatic factors. To facilitate comparison, 
the ArcGIS 10.4 classify function was used to arrange 
the spatial patterns of FIH, FIH frequency, and FIH dura-
tion values into 1–5 classes. The reclassify function was 

Table 4   Criteria for vulnerability to food crisis

Vulnerability index  < 0.2 0.2–0.4 0.4–0.6 0.6–0.8  > 0.8

Severity of frequency Very low frequency Low frequency Medium frequency High frequency Very high frequency
Severity of duration Very low duration Low duration Medium duration High duration Very high duration

Fig. 3   Spatial patterns of projected changes in 10 extreme rainfall 
events (total rainfall, rainfall intensity, wet days, dry days, wet spells, 
dry spells, Rainfall Onset Date (RODs), Rainfall Cessation Dates 
(RCDs), Length of Rainy Season(LRS) and Standardized Precipita-

tion Index (SPI). The analysis is conducted for the seasons of MAM 
under SSP1-2.6 (first and second row) and JJAS under SSP5-8.5 
(third and fourth row)
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Fig. 4   Spatial patterns of Food Insecurity Hotspots (FIH) for each reporting period of January, June-July, and October between 2009–2019 over 
IGAD region. The last two maps in column five are mean average (a) and variability (b)
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then used to scale FIH values from 1–5, with 1, 2, 3, 4, 
and 5 representing minimal, stressful, crisis, emergency, 
or famine categories according to the Integrated Food 
Security Phase Classification (IPC). The FIH frequency 
and duration values were reclassified into very low, low, 
moderate, high, and very high frequency, while the FIH 
duration values were reclassified into very low, low, mod-
erate, high, and very high duration. The variability in FIH 
is classified into three categories: low, moderate, and high 
variability.

Projected exposure to extremes

In order to calculate the projected exposure and 
vulnerability to food insecurity hotspots frequency 
and duration, as described in “Projected exposure 
to extremes” section and “Future vulnerability to 
food insecurity hotspots” sub-sections and “Future 
vulnerability to food crisis frequency and duration”, this 
study utilized the concepts, criteria, and classification for 
vulnerability to climate risk developed by Krishnamurthy 
et al., (2014). These were employed as a tool to compute 

the Hunger and Climate Vulnerability Index. To assess 
the future changes in ten extreme rainfall events 
(discussed in “Projected extreme rainfall events” sub-
section), we used them to determine the current and 
projected spatial patterns of exposure to extreme rainfall 
events. It was assumed that each index (ten extreme 
rainfall events) contributes 10% equally (layers with 
equal importance) to the food security hazard level. To 
facilitate comparison, the ArcGIS 10.4 classify function 
was utilized to arrange the ten extreme rainfall events 
related to food security values into five classes (1–5). The 
reclassify function was then employed to scale the values 
from 1–5, with 1, 2, 3, 4, and 5 representing very low, 
low, moderate, high, and very high exposure, respectively 
(Fig. 2). Finally, the ArcGIS 10.4 weighted sum function 
was used to calculate the percentage influence (%) of 
each of the ten extreme rainfall events in relation to 
food security. The final outputs are expressed as relative 
exposure and scaled into five categories (classes), with 
each class representing 20% of the values: < 0.2, 0.2–0.4, 
0.4–0.6, 0.6–0.8, and > 0.8, which correspond to very 
low, low, medium, high, and very high exposure levels, 
as shown in Table 2.

Very low frequency 

Low frequency 

Moderate frequency 

High frequency  

Very high frequency

Fig. 5   Spatial patterns of Food insecurity frequency: (a) minimal, (b) stressed, (c) crises, (d) emergency and (e) famine over the 10  years 
between 2009 and 2019
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Future vulnerability to food insecurity hotspots

The mean, or arithmetic mean, is used to calculate the 
spatial average of 10 years of data for each Food Insecurity 
Hotspot (FIH), including baseline average and variability. 
The ArcGIS 10.4 classify function is then used to organize 
the spatial patterns of exposure to changes in rainfall from 
“Projected extreme rainfall events” subsection and the FIH 
baseline values from “Baseline food insecurity hotspot, 
frequency and duration” subsection into 1–5 classes for 
easy comparison (Fig. 2). The reclassify function is applied 
to scale the values from 1–5, with 1 representing very low 
vulnerability and 5 representing very high vulnerability. 
The ArcGIS 10.4 weighted sum function is used to calculate 
the percentage influence of each exposure and FIH baseline. 
It is important to note that there are various factors at 
the regional, national, and local levels that contribute 
to the current vulnerability to food insecurity, including 
demographic, social, environmental, biological, cultural, 
developmental challenges, and political aspects. For the 
future, it is assumed that these factors will either remain 
unchanged or experience a percentage change of 10%, 
25%, and 50% under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 

emission scenarios, respectively. In order to assess the 
future pattern of vulnerability to FIH, the final outputs are 
ranked and scaled from 1–5, with 1 representing very low 
vulnerability and 5 representing very high vulnerability 
(Table 3).

Future vulnerability to food crisis frequency and duration

The mean, specifically the arithmetic mean, is used to calcu-
late the spatial average of FIH frequency and duration over 
a period of 10 years. Among the five categories of FIH, we 
have chosen to focus on the food crisis category in order to 
analyze the spatial patterns of both frequency and duration. 
This category was selected because it represents the middle 
point between the minimal and stressed categories, which 
have lower rankings in terms of risk and emergency. These 
categories have less frequent and shorter duration occur-
rences. To facilitate comparison, the ArcGIS 10.4 classify 
function is employed to organize the spatial patterns of expo-
sure, FIH food crisis frequency, and duration values into 
1–5 classes. These classes are then further scaled using the 
reclassify function, with values ranging from 1–5(Fig. 2). 
These values represent very low, low, moderate, high, and 

Very low duration 

Low duration  

Moderate duration  

High duration   

Very high duration 

Fig. 6   Spatial patterns of Food insecurity duration: (a) minimal, (b) stressed, (c) crises, (d) emergency and (e) famine over the 10 years between 
2009 and 2019
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very high frequency and duration, respectively. The Arc-
GIS 10.4 weighted sum function is used to calculate the 
percentage influence (%) of each exposure, FIH, food crisis 
frequency, and duration. This calculation is based on the 
assumption that the probability of the current observed FIH, 
food crisis frequency, and duration will not change (0%), 
or will change by 10%, 25%, and 50% in the future under 
SSP1-2.6, SSP2-4.5, and SSP5-8.5 emission scenarios. The 
final outputs were ranked from smallest to largest values and 
scaled from 1–5, with each number representing very low, 
low, moderate, high, and very high frequency and duration, 
respectively (Table 4).

The Climate Data Tool(CDT) developed by IRI through 
ENACTS project (Dinku et al. 2022), and ArcMap10.4 used 
to compute and visualized the spatial maps of exposure, vul-
nerability to FIH, food crisis frequency and duration.

Results and discussions

Projected changes in extremes rainfall events

The percentage of change in various extreme indices, such 
as total rainfall, rainfall intensity, wet days, wet spells, dry 
days, dry spells, RODs, RCDs, LRS, and SPI, is presented in 
Fig. 3. These changes are assessed to understand the spatial 
patterns during the MAM and JJAS seasons under different 
scenarios: SSP1-2.6 for the near future (2021–2050) and 
SSP5-8.5 for the far future (2071–2100). The results indicate 
a 10–30% decrease in total rainfall, rainfall intensity, wet 
spells, RCDs, LRDs, and SPI over Sudan, the northern parts 
of South Sudan, and northern Ethiopia during MAM under 
SSP1-2.6 in the near future. The intensity of drought (SPI) is 
projected to increase by 10–20% over Sudan, South Sudan, 
central, and northern Ethiopia during MAM under SSP1-
2.6 in the near future (2021–2050) due to decreased rainfall 
intensity, wet days, wet spells, rainfall, and an increase in 
dry days. For MAM under SSP1-2.6 in the near future, 
a 5–50% increase in total rainfall, rainfall intensity, wet 
days, and wet spells is projected over most parts of Kenya, 
southeastern Ethiopia, and Somalia. However, during JJAS 
under SSP5-8.5 in the far future, a 10–50% increase in total 
rainfall, rainfall intensity, early-onset RODs, and late RCDs 
is projected over Sudan, South Sudan, and Ethiopia. At the 
end of the century under SSP5-8.5 scenarios, more than a 
50% increase in total rainfall is projected over semi-arid 
and desert areas in Sudan. This increase is due to higher 
rainfall intensity, an increase in wet days, and longer wet 
spells. Studies by Ayugi et al. (2021a) and Dike et al. (2022) 
suggest that there will be an increase in dry days (CDD) 
and a decrease in wet days during MAM and OND towards 
the latter part of the twenty-first century (2081–2100). The 
Turkana and Karamoja regions in Kenya and Uganda, which 

are highly vulnerable to climate change and variability, are 
projected to experience less rainfall during MAM due to 
decreased rainfall intensity, wet days, wet spells, an increase 
in dry days, and longer dry spells. This will contribute to 
an increase in aridity and semi-desert climate conditions, 
making the regions more vulnerable. These findings partly 
align with the study by Oscar et al. (2022), which projected 
an increase in total rainfall in March and a decrease in 
April and May over most parts of Uganda. The study also 
indicated an increase in rainfall variability across East 
Africa (Mbigi et al. 2022). The increase (or decrease) in the 
percentage of total rainfall and the change in intensity can 
be attributed to factors such as early RODs (or late), late 
RCDs (or early), prolonged LRS (or shorter), decreased (or 
increased) rainfall intensity, more wet days (or fewer dry 
days), and changes in dry days and dry spells. Additionally, 
the frequency of floods is projected to increase (or drought 
frequency and intensity to decrease) over most parts of the 
region during MAM and JJAS under low scenarios (SSP1-
2.6) and high scenarios (SSP5-8.5) in the near and far future. 
However, contrary to Contrary to Ayugi et al. (2022a), who 
projected more frequent and intense droughts in the dry 
regions of East Africa in the far future. In general, there is 
strong evidence suggesting that climate change will lead to 
an increase in the intensity and frequency of extreme rainfall 
events in many areas. However, it is important to note that 
there is also considerable variation between regions and over 
time (Gebrechorkos et al. 2020). To effectively prepare for 
these changes, it is crucial to have access to accurate and 
timely information regarding current and projected changes 
in extreme events, as well as areas at higher risk, resilient 
food infrastructure, and adaptive management practices 
(Alkhalifah et al. 2023).

Baseline average and variability of food insecurity 
hotspots

To establish a baseline average of food insecurity in hot-
spots, it is necessary to analyze consistent and comparable 
data over time. Figure 4 illustrates the spatial patterns of 
Food Insecurity Hotspots (FIH) for each reporting period 
(January, June-July, and October) from 2009 to 2019 in 
the IGAD region. The results reveal an arid, semi-desert 
climate in northern, eastern, and northeastern Kenya, 
southeastern Ethiopia, most of Somalia, and Sudan. These 
regions consistently face food stress, crisis, and emergen-
cies. The rainfall patterns starting from March to November 
in Uganda, most parts of South Sudan (April–October), and 
the highlands of western Ethiopia and Kenya, along with 
rain belts in southern Sudan, contribute to the persistence 
of minimal food insecurity hotspots. A study by Natamba 
et al. (2018), supports this, showing that fluctuating rain-
fall patterns in Eastern Africa are a major cause of food 
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insecurity. In South Sudan, there is a persistent food crisis 
in some parts of Upper Nile, Unity, and Jonglei states due 
to internal conflicts that occurred between 2009 and 2012 
involving government and rebel forces led by George Athor 
and Johnson Olong (Krause 2019). However, the main driver 
of food insecurity in South Sudan from 2015 to 2019 is the 
devastating conflict that began in 2013 between President 
Kiir and his deputy, Reik Machar, which still has linger-
ing consequences of insecurity and related poverty issues 
(Krause 2019). Minimal food insecurity hotspots were 
observed in the northern parts of Sudan, primarily due to 
the desert climate in these areas and the absence of assets 
at risk. During the first reporting period (January–Febru-
ary), the availability of food options in the red coastal parts 
of Sudan reduced food insecurity, stress, and crisis, thanks 
to rainfall patterns during the winter season (November-
January). However, political instability and street protests 
in eastern cities such as Port Sudan and Kasala between 
2018 and 2019 plunged the region into a food crisis and 
emergency category. The effects of the drought in 2011 over 
Somalia, northeastern Kenya, and southeastern Ethiopia had 
a clear and significant impact on food crises and emergen-
cies for 10–12 consecutive reporting periods (2010–2012). 
Early onset, late cessation, longer rainy seasons, fewer dry 
days, more wet days, and consecutive spells were the main 
factors contributing to food security (no recorded incidents 
of food insecurity) in most parts of Uganda, western Kenya, 
and western Ethiopia throughout the four reporting periods 
examined over the 10-year study period, as a result of local 
food production. Despite the presence of fertile land and 
favorable rainfall patterns, South Sudan experienced food 
insecurity in July, October, and January, highlighting the 
significant impact of conflict and political instability on the 
country's food security systems. In other words, conflicts 
can push a region or country into social and political con-
flicts and food insecurity, even during the main agricultural 
season or crop harvest (Gemechu 2023).

Figures 5 and 6 present the average patterns of food 
insecurity hotspot frequency and duration over the 10-year 
period from 2009 to 2019. The areas with the lowest food 
insecurity hotspots, highest minimal category of FIH fre-
quencies (Fig.  5a), and highest FIH minimal duration 
(Fig. 6a) were the Western Kenya and Ethiopian highlands, 
as well as southern and central Uganda. These areas had 

high food production due to prolonged rainy season, which 
typically started in March and continued until November 
(Omay et al. 2022). They also experienced prolonged wet 
days and consecutive wet spells (Omay et al. 2023b). The 
frequency and duration of food stress and crisis categories 
in ASALs in Eritrea, Djibouti, Kenya, Somalia, and south-
east Ethiopia were very low. Similarly, the frequency and 
duration of famine category of food insecurity were very 
low in East Africa. Only certain districts in central Somalia 
experienced moderate to high frequency (Fig. 5d, e) and 
longer duration of famine (Fig. 6d, e) due to food emergen-
cies and drought. The drought, which began in 2010 and 
was declared a national disaster by Somali authorities in 
2011, resulted in between 244,000 and 273,000 deaths from 
hunger in southern and central Somalia, according to FAO 
and FEWS data (Checchi and Robinson 2013; Shukla et al. 
2014). Due to less total rainfall, longer dry days, and longer 
consecutive dry spells on annual and seasonal scales, these 
areas cannot go for many reporting periods without report-
ing food stress and crisis. The frequency and duration of 
food insecurity confirmed the significant impact of extreme 
rainfall events on sustainable food security. The patterns 
of food insecurity hotspot frequency and duration between 
2009 and 2019 highlighted the role of non-climatic factors in 
influencing food security in the future. The spatial patterns 
of food insecurity hotspots suggest that political instability 
is the main cause of the very high frequency and prolonged 
duration of food insecurity in East Africa. Additionally, con-
ducive climatic conditions for crop failure, conflict, and poor 
governance contribute to hunger and food insecurity in all 
five Integrated Food Security Phase Classifications (IPC) 
categories in East Africa.

Projected future exposure to change in extreme 
rainfall

If the climate is changing in the present and we expect more 
significant changes in the future, how will the future patterns 
of exposure, as the main components of vulnerability, appear 
under different scenarios? To answer this question, we devel-
oped the ArcGIS weighted sum model. We assumed that 
each of the ten extreme rainfall events (total rainfall, rainfall 
intensity, wet days, dry days, wet spells, dry spells, Rain-
fall Onset Date (RODs), Rainfall Cessation Dates (RCDs), 
Length of Rainy Season (LRS), and Standardized Precipi-
tation Index (SPI) computed in Fig. 3) has an equal weight 
influence of 10%. We computed the patterns for the MAM 
and JJAS seasons for the near and far future under SSP1-
2.6, 2–4.5, and SSP5-8.5 scenarios. The results indicate that 
most parts of Uganda, southwestern South Sudan, and the 
highlands of southwestern Ethiopia and Kenya are projected 
to have a very low likelihood of susceptibility (exposure) 
to changes in extreme rainfall events under the SSP1-2.6, 

Fig. 7   Projected changes in exposure to extreme rainfall events 
(changes in total rainfall, rainfall intensity, wet days, dry days, wet 
spells, dry spells, rainfall onset, cessation dates, and rainy season 
length and Standardized Precipitation Index (SPI)) during MAM (first 
and second row) and JJAS (third and fourth row). The analysis was 
conducted for near future 2021–2050 (first and third row), and far 
future 2071–2100 (second and fourth row) under the SSP1-2.6(first 
column), SSP2-4.5(second column) and SSP5-8.5 scenarios (third 
column)
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2–4.5, and SSP5-8.5 scenarios (Fig. 7). This is due to the 
projected increase in the number of wet days (Tegegne and 
Melesse 2021), consecutive wet spells, and rainfall inten-
sity, as well as a decrease in dry days and dry spells (Omay 
et al. 2023b). Central and northern Sudan, Eritrea, Djibouti, 
northeastern Ethiopia, and northern Somalia, on the other 
hand, are projected to have a very high to high susceptibility 
to food insecurity. This is because of aridity, an increase in 
dry days, and prolonged dry spells during the MAM season. 
Moreover, the susceptibility increases or decreases propor-
tionally with the primary rainy season (dry season). For 
instance, eastern and northeast Kenya have a very high expo-
sure during JJAS compared to the MAM season under dif-
ferent scenarios. Under the SSP5-5.8 scenario, the category 
of very low exposure (susceptibility) is expected to expand/
increase (low risks) over South Sudan and western Ethiopia 
due to the projected increase in total rainfall, rainfall inten-
sity, and the number of wet days. In a similar study, Ayugi 
et al. (2022b) used CMIP6 models to assess the exposure of 
the East African population to precipitation extremes at 1.5 
and 2.0 °C warming levels. The analysis reveals that popula-
tion changes have a more significant impact on future expo-
sure than climate or climate-population changes. If these 
increased rainfall patterns are utilized effectively for water 
harvesting in Kenya and for increased food and cash crops 
in South Sudan and Ethiopia, the level of food insecurity 
will significantly decrease. There may also be an increase 
in agricultural exports to other parts of the world, leading 
to an improvement in the countries' GDP and contributing 
to the achievement of the primary sustainable development 
goals such as No Poverty, Zero Hunger, Good Health, and 
Well-Being in Africa Union Agenda 63, as well as the IGAD 
development, peace, and security goals.

Projected changes in food insecurity hotspots

Figure 8 illustrates the projected changes in current hot-
spots of food insecurity due to future changes in exposure 
to extreme rainfall events. This is done using an ArcGIS 
weighted sum model, which combines the hotspots of food 
insecurity from Fig. 4 with the exposure to 10 extreme 
rainfall events from Fig. 7. The assumption is that the cur-
rent root causes of food insecurity hotspots will change by 
10%, 25%, or 50% in the future under projected changes 
in exposure under different scenarios (SSP1-2.6, SSP2-4.5, 
and SSP5-8.5). However, since there were insignificant 

changes in the spatial patterns of 10%, 25%, or 50% influ-
ence, we present outputs that reflect a 50% influence. The 
results indicate that the current prevalence of high to very 
high food insecurity hotspots in northern Darfour and the 
Red Sea in Sudan, Eritrea, Djibouti, and northern Soma-
lia will continue in the near future (2021–2050) during 
the MAM and JJAS seasons under SSP5-8.5. However, by 
the end of the century (2071–2100), the hotspots will be 
reduced in both seasons due to projected increases in rain-
fall patterns and reduced exposure to extreme events under 
SSP5-8.5. Additionally, the results show that under SSP2-
2.5 for the near future and SSP5-8.5 for the far future, the 
current zones of very low susceptibility in southwestern 
South Sudan, western Ethiopia, and southern and central 
Uganda will continue to expand, covering a wider area. On 
the other hand, under SSP1-2.6 and SSP2-4.5, the very low 
cases of food insecurity hotspots during the JJAS season will 
decrease in both the near (2021–2050) and far (2071–2100) 
future. This means that more people will fall into the low 
food insecurity hotspot category rather than the extremely 
low category in these places. Furthermore, the vulnerability 
category of very high vulnerability to food insecurity will 
change to high vulnerability over most of Kenya, northeast-
ern Ethiopia, and Somalia. This is due to projected increases 
in rainfall in southeast Ethiopia, Kenya, and Somalia, and a 
decrease in rainfall extremes over South Sudan and western 
Ethiopia (Omay et al. 2023b). These findings align with the 
results of Ayugi et al. (2022a), who reported an increase in 
extreme precipitation and population exposure indices over 
East Africa at 1.5 °C and 2.0 °C of global warming under 
both SSP2-4.5 and SSP5-8.5 scenarios.

Projected changes in the patterns of food crisis 
frequency

Figure 9 illustrates the current and projected patterns of 
food crisis frequency in East Africa during the JJAS sea-
son. These patterns are based on the outputs of the Arc-
GIS weighted sum model, which combines hotspots of 
food insecurity frequency (shown in Fig. 5c) with expo-
sure to 10 extreme rainfall events (computed in Fig. 7). 
We examine the potential impact of adaptation measures 
on the frequency of food insecurity hotspots in the future, 
considering three thresholds: 10%, 25%, and 50%. These 
thresholds indicate the extent to which adaptation can influ-
ence the underlying causes of food insecurity, in relation 
to the projected changes in extreme precipitation patterns. 
The projections are made under the SSP1-2.6 and SSP5-
8.5 scenarios for the near future (2021–2050) and the far 
future (2071–2100). The current results reveal the highest 
frequency of food crises in Sudan's Blue Nile and South 
Kordofan, South Sudan's wider Upper Nile region (Unity, 
Upper Nile, and Jonglei), eastern and northeast Kenya, 

Fig. 8   Projected changes in food insecurity hotspots (50% influence) 
under projected changes in exposure to extreme rainfall events dur-
ing MAM (first and second row) and JJAS (third and fourth row). 
The analysis was conducted for near future 2021–2050 (first and third 
row), and far future 2071–2100 (second and fourth row) under the 
SSP1-2.6(first column), SSP2-4.5(second column) and SSP5-8.5 sce-
narios (third column)
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southeast and northeast Ethiopia, and northern Somalia. 
These crises are caused by a combination of climatic and 
non-climatic factors. Political instability, such as fighting 
between the government and rebels, is the primary root 
cause in Unity, Upper Nile, Jonglei, the Blue Nile, and 
South Kordofan. Conflicts, crop failures, and poor govern-
ance are the main factors leading to food crises in eastern 
and northeast Kenya, southeast and northeast Ethiopia, and 
northern Somalia. Now, let's consider the impact of imple-
menting adaptation measures to reduce the current non-
climatic factors under the SSP1-2.6 and SSP5-8.5 scenarios. 
If we eliminate the root cause of political instability in the 
future in South Sudan, the food crisis will become a thing of 
the past. Similarly, if we invest 25% or more in addressing 
other underlying factors such as aridity, crop failures, and 
poor governance, the current very high food crisis category 
will shift to very low across most of the region. The key ele-
ments contributing to food insecurity in East Africa are vio-
lence, crop failures, and poor governance (Bedasa and Dek-
sisa 2024). Therefore, if we allocate 50% of our resources 
to addressing these factors in eastern and northeast Kenya, 
southeast and northeast Ethiopia, and northern Somalia, 
the frequency of food crises will decrease from very high to 
moderate. Similarly, Somalia has been experiencing persis-
tent droughts, conflicts, and economic challenges in recent 
years, which have led to repeated food crises affecting mil-
lions of people (Warsame et al. 2023). Likewise, Sudan is 
facing one of the world's worst humanitarian crises due to 
ongoing conflict, resulting in severe food insecurity and 
malnutrition. Additionally, South Sudan is grappling with 
civil war, economic collapse, and climatic shocks, lead-
ing to widespread hunger and displacement (Ensor 2022). 
Therefore, implementing adaptation measures to reduce or 
eliminate the root causes of food crises in Sudan, Somalia, 
and South Sudan will address the issues of food insecurity 
hotspots, frequency, and duration in the future.

Projected changes in the patterns of food crises 
duration

Figure 10 presents the projected duration of the food 
crisis during the MAM season for the near future 
(2021–2050) and far future (2072–2100) under SSP1-2.6 
and SSP5-8.5. These projections are based on the ArcGIS 
weighted sum model outputs, which consider the hotspots 
of food insecurity duration shown in Fig. 6c, as well as 
the exposure to 10 extreme rainfall events presented in 
Fig. 7. The results show that most parts of Uganda, south-
western South Sudan, and western Ethiopia are expected 
to have a very low duration of food insecurity in both the 
near and far future, regardless of the SSP. Conversely, 
western Darfur and the Red Sea in Sudan are projected 
to have a very high duration of food insecurity. The pro-
jected duration of food crises varies significantly depend-
ing on the underlying causes, the region affected, and 
the response efforts (Bowen et al. 2021). This suggests 
that areas in East Africa with higher annual and seasonal 
rainfall, more wet days, fewer dry days, prolonged con-
secutive wet spells, and higher rainfall intensity per day 
are likely to experience a shorter duration of food inse-
curity, and vice versa. The impact of the 10%, 25%, and 
50% assumptions on the duration of food crises becomes 
more significant as the influence percentage increases. 
The category of very high crisis duration is expected to 
decrease over ASALs in the region due to a slight pro-
jected increase in total rainfall and wet days. This implies 
that efforts to help people adapt to ASALs will have a 
more noticeable effect compared to a humid climate. 
Consequently, actions taken to address food crises will 
have a greater impact in Sudan, northeastern Ethiopia, 
and northern Somalia, regardless of the SSP scenario. 
However, if political instability, imbalanced development 
policies, and conflicts arising from electoral disputes con-
tinue in the IGAD region, the existing hotspots of food 
insecurity will persist. This could result in an increase 
in the frequency and duration of current food insecurity 
hotspots, or the emergence of new hotspots, even with 
an increase in rainfall. The key to shortening the dura-
tion lies in timely and effective intervention, addressing 
the root causes, and building resilience within affected 

Fig. 9   Projected changes in patterns of food crisis frequency under 
projected changes in exposure to extreme rainfall events associated 
with 10%, 25%, and 50% assumption of future changes in current root 
causes of food insecurity hotspots frequency. The patterns computed 
during JJAS under the SSP1-2.6(first and second tow) and SSP5-8.5 
scenarios (third and fourth row)
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communities (Brough et al. 2022). These findings under-
score the importance of addressing the underlying factors 
of food crises in order to create a brighter future for the 
next generation in the IGAD region of East Africa.

Conclusions

Total annual and seasonal rainfall patterns are projected to 
worsen in most of the IGAD region. This is due to an increase 
in heavy rain, wet days, and prolonged periods of rain, and a 
decrease in dry days and dry spells in the near (2021–2050) 
and far (2071–2100) futures, as indicated by the SSP1-2.6, 
SSP2-4.5, and SSP5-8.5 scenarios. The observed instances of 
minimal food insecurity in Uganda, western Kenya, and Ethi-
opia were a result of high rainfall, more wet days, and higher 
rainfall intensity. In South Sudan, the areas classified as food 
insecurity hotspots under the stressful and crisis categories 
were primarily affected by conflicts rather than climate. The 
prevalence of food insecurity in the form of stressful, crisis, 
and emergency cases in ASALs in northern Sudan, Eritrea, 
Djibouti, Somalia, southeastern and northeastern Ethiopia, 
and Kenya can be attributed to the desert climate and arid 
and semi-arid conditions experienced throughout the years. 
The projected exposure to food insecurity is expected to be 
very high in ASALs in Sudan, Eritrea, Djibouti, Somalia, 
southeastern and northeastern Ethiopia, and Kenya under the 
SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios. Conversely, the 
projected vulnerability to food insecurity is anticipated to be 
very low in Uganda, South Sudan, western Kenya, and cen-
tral and western Ethiopia under the same scenarios. Changes 
in total annual rainfall, rainfall intensity, prolonged wet days, 
and wet spells have a significant impact on the occurrence 
of low or high exposure and vulnerability to food insecurity, 
as well as the presence of food insecurity hotspots, and the 
frequency and duration of food insecurity in most regions of 
East Africa. These changes vary across different scenarios: 
SSP1-2.6, SSP2-4.5, and SSP5-8.5. The high exposure, vul-
nerability, frequency, and duration of food insecurity in the 
Arid and Semi-Arid Lands (ASALs) in the IGAD region 
underscore the urgent need for comprehensive food security 
interventions. It is crucial to implement appropriate adapta-
tion strategies to protect the already vulnerable population 
and capitalize on the projected increase in rainfall and wet 
days in Uganda, South Sudan, western Kenya, and Ethiopia 
to boost food production in the region.
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